SPRec: Self-Play to Debias LLM-based Recommendation
- URL: http://arxiv.org/abs/2412.09243v3
- Date: Thu, 06 Feb 2025 12:03:33 GMT
- Title: SPRec: Self-Play to Debias LLM-based Recommendation
- Authors: Chongming Gao, Ruijun Chen, Shuai Yuan, Kexin Huang, Yuanqing Yu, Xiangnan He,
- Abstract summary: Large language models (LLMs) have attracted significant attention in recommendation systems.
We propose SPRec, a novel self-play framework designed to mitigate over-recommendation and improve fairness without requiring additional data or manual intervention.
- Score: 23.875509546540904
- License:
- Abstract: Large language models (LLMs) have attracted significant attention in recommendation systems. Current work primarily applies supervised fine-tuning (SFT) to adapt the model for recommendation tasks. However, SFT on positive examples only limits the model's ability to align with user preference. To address this, researchers recently introduced Direct Preference Optimization (DPO), which explicitly aligns LLMs with user preferences using offline preference ranking data. However, we found that DPO inherently biases the model towards a few items, exacerbating the filter bubble issue and ultimately degrading user experience. In this paper, we propose SPRec, a novel self-play framework designed to mitigate over-recommendation and improve fairness without requiring additional data or manual intervention. In each self-play iteration, the model undergoes an SFT step followed by a DPO step, treating offline interaction data as positive samples and the predicted outputs from the previous iteration as negative samples. This effectively re-weights the DPO loss function using the model's logits, adaptively suppressing biased items. Extensive experiments on multiple real-world datasets demonstrate SPRec's effectiveness in enhancing recommendation accuracy and fairness. The implementation is available via https://github.com/RegionCh/SPRec
Related papers
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT) is an effective approach that better aligns Large Language Models with pair-wise datasets.
ASFT mitigates the issue where the DPO loss function decreases the probability of generating human-dispreferred data.
Extensive experiments demonstrate that ASFT is an effective alignment approach, consistently outperforming existing methods.
arXiv Detail & Related papers (2024-09-14T11:39:13Z) - Right Now, Wrong Then: Non-Stationary Direct Preference Optimization under Preference Drift [21.16837827950466]
Current preference optimization algorithms do not account for temporal preference drift in their modeling.
We propose Non-Stationary Direct Preference optimisation (NS-DPO)
We show that NS-DPO fine-tuned LLMs remain robust under non-stationarity.
arXiv Detail & Related papers (2024-07-26T11:38:18Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
We propose Softmax-DPO (S-DPO) to instill ranking information into the LM to help LM-based recommenders distinguish preferred items from negatives.
Specifically, we incorporate multiple negatives in user preference data and devise an alternative version of DPO loss tailored for LM-based recommenders.
arXiv Detail & Related papers (2024-06-13T15:16:11Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Language model (LM) post-training involves maximizing a reward function that is derived from preference annotations.
DPO is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning.
We analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive [15.066029556877721]
We show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples.
We design DPO-Positive (DPOP), a new loss function and training procedure which avoids this failure mode.
Surprisingly, we find that DPOP outperforms DPO and other fine-tuning procedures across a wide variety of datasets and downstream tasks.
arXiv Detail & Related papers (2024-02-20T18:42:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.