MultiEYE: Dataset and Benchmark for OCT-Enhanced Retinal Disease Recognition from Fundus Images
- URL: http://arxiv.org/abs/2412.09402v1
- Date: Thu, 12 Dec 2024 16:08:43 GMT
- Title: MultiEYE: Dataset and Benchmark for OCT-Enhanced Retinal Disease Recognition from Fundus Images
- Authors: Lehan Wang, Chongchong Qi, Chubin Ou, Lin An, Mei Jin, Xiangbin Kong, Xiaomeng Li,
- Abstract summary: We present the first large multi-modal multi-class dataset for eye disease diagnosis, MultiEYE.
We propose an OCT-assisted Conceptual Distillation Approach ( OCT-CoDA) to extract disease-related knowledge from OCT images.
Our proposed OCT-CoDA demonstrates remarkable results and interpretability, showing great potential for clinical application.
- Score: 4.885485496458059
- License:
- Abstract: Existing multi-modal learning methods on fundus and OCT images mostly require both modalities to be available and strictly paired for training and testing, which appears less practical in clinical scenarios. To expand the scope of clinical applications, we formulate a novel setting, "OCT-enhanced disease recognition from fundus images", that allows for the use of unpaired multi-modal data during the training phase and relies on the widespread fundus photographs for testing. To benchmark this setting, we present the first large multi-modal multi-class dataset for eye disease diagnosis, MultiEYE, and propose an OCT-assisted Conceptual Distillation Approach (OCT-CoDA), which employs semantically rich concepts to extract disease-related knowledge from OCT images and leverage them into the fundus model. Specifically, we regard the image-concept relation as a link to distill useful knowledge from the OCT teacher model to the fundus student model, which considerably improves the diagnostic performance based on fundus images and formulates the cross-modal knowledge transfer into an explainable process. Through extensive experiments on the multi-disease classification task, our proposed OCT-CoDA demonstrates remarkable results and interpretability, showing great potential for clinical application. Our dataset and code are available at https://github.com/xmed-lab/MultiEYE.
Related papers
- Embeddings are all you need! Achieving High Performance Medical Image Classification through Training-Free Embedding Analysis [0.0]
Developing artificial intelligence (AI) and machine learning (ML) models for medical imaging typically involves extensive training and testing on large datasets.
We investigated the feasibility of replacing conventional training procedures with an embedding-based approach.
arXiv Detail & Related papers (2024-12-12T16:59:37Z) - CC-DCNet: Dynamic Convolutional Neural Network with Contrastive Constraints for Identifying Lung Cancer Subtypes on Multi-modality Images [13.655407979403945]
We propose a novel deep learning network designed to accurately classify lung cancer subtype with multi-dimensional and multi-modality images.
The strength of the proposed model lies in its ability to dynamically process both paired CT-pathological image sets and independent CT image sets.
We also develop a contrastive constraint module, which quantitatively maps the cross-modality associations through network training.
arXiv Detail & Related papers (2024-07-18T01:42:00Z) - Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis [3.8758525789991896]
An innovative multi-modal deep learning model is proposed to deeply integrate heterogeneous information from medical images and clinical reports.
For medical images, convolutional neural networks were used to extract high-dimensional features and capture key visual information.
For clinical report text, a two-way long and short-term memory network combined with an attention mechanism is used for deep semantic understanding.
arXiv Detail & Related papers (2024-05-23T02:22:10Z) - Fundus-Enhanced Disease-Aware Distillation Model for Retinal Disease
Classification from OCT Images [6.72159216082989]
We propose a fundus-enhanced disease-aware distillation model for retinal disease classification from OCT images.
Our framework enhances the OCT model during training by utilizing unpaired fundus images.
Our proposed approach outperforms single-modal, multi-modal, and state-of-the-art distillation methods for retinal disease classification.
arXiv Detail & Related papers (2023-08-01T05:13:02Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Multimodal Information Fusion for Glaucoma and DR Classification [1.5616442980374279]
Multimodal information is frequently available in medical tasks. By combining information from multiple sources, clinicians are able to make more accurate judgments.
Our paper investigates three multimodal information fusion strategies based on deep learning to solve retinal analysis tasks.
arXiv Detail & Related papers (2022-09-02T12:19:03Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.