論文の概要: Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer
- arxiv url: http://arxiv.org/abs/2412.09417v1
- Date: Thu, 12 Dec 2024 16:25:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:02:03.613967
- Title: Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer
- Title(参考訳): 古典的ロボティクススタックにおける強化学習 : ロボットサッカーの事例研究
- Authors: Adam Labiosa, Zhihan Wang, Siddhant Agarwal, William Cong, Geethika Hemkumar, Abhinav Narayan Harish, Benjamin Hong, Josh Kelle, Chen Li, Yuhao Li, Zisen Shao, Peter Stone, Josiah P. Hanna,
- Abstract要約: モデルフリー強化学習(RL)を古典的なロボットスタックに組み込んだ新しいアーキテクチャを開発する。
私たちのアーキテクチャは2024年のRoboCup SPL Challenge Shield Divisionで勝利しました。
- 参考スコア(独自算出の注目度): 25.161615988222934
- License:
- Abstract: Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.
- Abstract(参考訳): 部分的に観察可能、リアルタイム、動的、マルチエージェント環境におけるロボットの意思決定は、困難で未解決の課題である。
モデルフリー強化学習(RL)は、そのような領域で意思決定を学ぶための有望なアプローチであるが、複雑な環境でのエンドツーエンドのRLは、しばしば難解である。
この課題に対処するために,従来のロボットスタックにRLを組み込んだ新しいアーキテクチャを開発し,マルチ忠実なsim2realアプローチを採用し,ヒューリスティックな選択を伴う学習サブ行動に振る舞いを分解した。
私たちのアーキテクチャは2024年のRoboCup SPL Challenge Shield Divisionで勝利しました。
本研究では,システムアーキテクチャを完全に記述し,その成功に寄与する重要な設計決定を実証的に分析する。
提案手法は,RLに基づく動作を完全なロボット行動アーキテクチャに組み込む方法を示す。
関連論文リスト
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Solving Multi-Goal Robotic Tasks with Decision Transformer [0.0]
ロボット工学におけるオフラインマルチゴール強化学習のための決定変換器アーキテクチャの新しい適応法を提案する。
われわれのアプローチでは、ゴール固有の情報を意思決定変換器に統合し、オフライン環境で複雑なタスクを処理できる。
論文 参考訳(メタデータ) (2024-10-08T20:35:30Z) - Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes [44.619927796194915]
強化学習(RL)は、広範囲のアプリケーションで非常に有望である。
ロボットの問題は、物理世界との相互作用の複雑さとコストから起因して、RLの応用に根本的な困難をもたらす。
この調査は、RLの能力を活用して一般的な実世界のロボットシステムを構築するための、RLの実践者とロボティクスの両方に洞察を提供するように設計されている。
論文 参考訳(メタデータ) (2024-08-07T04:35:38Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
リアルタイム戦略(RTS)環境では,多様な現実シナリオの生成が難しい。
既存のシミュレータのほとんどは環境をランダムに生成することに頼っている。
我々は、研究者を支援するために、既存の形式シナリオ仕様言語であるSCENICを採用する利点を紹介する。
論文 参考訳(メタデータ) (2021-06-18T21:49:46Z) - How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
Learned [111.06812202454364]
本稿では,ロボット深部RLのケーススタディをいくつか紹介する。
深部RLにおける一般的な課題と,それらの課題について論じる。
また、他の卓越した課題についても概説し、その多くが現実世界のロボティクスの設定に特有のものである。
論文 参考訳(メタデータ) (2021-02-04T22:09:28Z) - A Framework for Studying Reinforcement Learning and Sim-to-Real in Robot
Soccer [1.1785354380793065]
本稿では,ロボットサッカーにおける強化学習(Reinforcement Learning, RL)とsim-to-realを研究するための,VSSS-RLと呼ばれるオープンフレームワークを紹介する。
本研究では,サッカーエージェントの完全な動作を制御するために,連続的あるいは離散的な制御ポリシーを訓練できるシミュレーション環境を提案する。
本研究の結果から,手作り制御政策の実施が困難な行動の幅広いレパートリーを学習したことが示唆された。
論文 参考訳(メタデータ) (2020-08-18T23:52:32Z) - The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems [0.0]
本稿では、複雑な環境チェックとレジリエントな操作に対する新しいアプローチを定式化する、ARL(Adversarial Learning)の概念について述べる。
ARLのクインテッサンスは、システムを探究し、ドメインの知識なしに互いに訓練するエージェントの両方にある。
本稿では、モデルベースDRLベースのアルゴリズムと同様に、広範囲のモデルフリーを使用できるARLソフトウェアアーキテクチャを紹介する。
論文 参考訳(メタデータ) (2020-05-27T19:19:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。