OFTSR: One-Step Flow for Image Super-Resolution with Tunable Fidelity-Realism Trade-offs
- URL: http://arxiv.org/abs/2412.09465v1
- Date: Thu, 12 Dec 2024 17:14:58 GMT
- Title: OFTSR: One-Step Flow for Image Super-Resolution with Tunable Fidelity-Realism Trade-offs
- Authors: Yuanzhi Zhu, Ruiqing Wang, Shilin Lu, Junnan Li, Hanshu Yan, Kai Zhang,
- Abstract summary: OFTSR is a flow-based framework for one-step image super-resolution that can produce outputs with tunable levels of fidelity and realism.
We demonstrate that OFTSR achieves state-of-the-art performance for one-step image super-resolution, while having the ability to flexibly tune the fidelity-realism trade-off.
- Score: 20.652907645817713
- License:
- Abstract: Recent advances in diffusion and flow-based generative models have demonstrated remarkable success in image restoration tasks, achieving superior perceptual quality compared to traditional deep learning approaches. However, these methods either require numerous sampling steps to generate high-quality images, resulting in significant computational overhead, or rely on model distillation, which usually imposes a fixed fidelity-realism trade-off and thus lacks flexibility. In this paper, we introduce OFTSR, a novel flow-based framework for one-step image super-resolution that can produce outputs with tunable levels of fidelity and realism. Our approach first trains a conditional flow-based super-resolution model to serve as a teacher model. We then distill this teacher model by applying a specialized constraint. Specifically, we force the predictions from our one-step student model for same input to lie on the same sampling ODE trajectory of the teacher model. This alignment ensures that the student model's single-step predictions from initial states match the teacher's predictions from a closer intermediate state. Through extensive experiments on challenging datasets including FFHQ (256$\times$256), DIV2K, and ImageNet (256$\times$256), we demonstrate that OFTSR achieves state-of-the-art performance for one-step image super-resolution, while having the ability to flexibly tune the fidelity-realism trade-off. Code and pre-trained models are available at https://github.com/yuanzhi-zhu/OFTSR and https://huggingface.co/Yuanzhi/OFTSR, respectively.
Related papers
- One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSR is a novel one-step diffusion Real-ISR based on flow matching models.
First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR.
Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss.
arXiv Detail & Related papers (2025-02-04T04:11:29Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
We propose a novel visual autoregressive modeling for ISR framework with the form of next-scale prediction.
We collect large-scale data and design a training process to obtain robust generative priors.
arXiv Detail & Related papers (2025-01-31T09:53:47Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
We introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image.
Our method enables fully offline training with just noise/image pairs from the diffusion model.
We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a $5times$ larger ViT in terms of FID scores.
arXiv Detail & Related papers (2023-12-12T07:28:40Z) - Enhancing Diffusion Models with 3D Perspective Geometry Constraints [10.21800236402905]
We introduce a novel geometric constraint in the training process of generative models to enforce perspective accuracy.
We show that outputs of models trained with this constraint both appear more realistic and improve performance of downstream models trained on generated images.
arXiv Detail & Related papers (2023-12-01T21:56:43Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - A Two-step-training Deep Learning Framework for Real-time Computational
Imaging without Physics Priors [0.0]
We propose a two-step-training DL (TST-DL) framework for real-time computational imaging without physics priors.
First, a single fully-connected layer (FCL) is trained to directly learn the model.
Then, this FCL is fixed and fixed with an un-trained U-Net architecture for a second-step training to improve the output image fidelity.
arXiv Detail & Related papers (2020-01-10T15:05:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.