論文の概要: Audios Don't Lie: Multi-Frequency Channel Attention Mechanism for Audio Deepfake Detection
- arxiv url: http://arxiv.org/abs/2412.09467v1
- Date: Thu, 12 Dec 2024 17:15:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:26.474063
- Title: Audios Don't Lie: Multi-Frequency Channel Attention Mechanism for Audio Deepfake Detection
- Title(参考訳): オーディオは嘘をつかない:オーディオディープフェイク検出のためのマルチ周波数チャネルアテンション機構
- Authors: Yangguang Feng,
- Abstract要約: マルチ周波数チャネルアテンション機構(MFCA)と2次元離散コサイン変換(DCT)に基づくオーディオディープフェイク検出手法を提案する。
音声信号をメルスペクトログラムに処理し、MobileNet V2を用いて深い特徴を抽出することにより、音声信号の微細な周波数領域の特徴を効果的に捉えることができる。
実験の結果,従来の手法と比較して,精度,精度,リコール,F1スコア,その他の指標において有意な優位性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the rapid development of artificial intelligence technology, the application of deepfake technology in the audio field has gradually increased, resulting in a wide range of security risks. Especially in the financial and social security fields, the misuse of deepfake audios has raised serious concerns. To address this challenge, this study proposes an audio deepfake detection method based on multi-frequency channel attention mechanism (MFCA) and 2D discrete cosine transform (DCT). By processing the audio signal into a melspectrogram, using MobileNet V2 to extract deep features, and combining it with the MFCA module to weight different frequency channels in the audio signal, this method can effectively capture the fine-grained frequency domain features in the audio signal and enhance the Classification capability of fake audios. Experimental results show that compared with traditional methods, the model proposed in this study shows significant advantages in accuracy, precision,recall, F1 score and other indicators. Especially in complex audio scenarios, this method shows stronger robustness and generalization capabilities and provides a new idea for audio deepfake detection and has important practical application value. In the future, more advanced audio detection technologies and optimization strategies will be explored to further improve the accuracy and generalization capabilities of audio deepfake detection.
- Abstract(参考訳): 人工知能技術の急速な発展に伴い、オーディオ分野におけるディープフェイク技術の応用は徐々に増加し、幅広いセキュリティリスクが生じる。
特に金融・社会保障分野では、ディープフェイク音声の誤用が深刻な懸念を引き起こしている。
そこで本研究では,マルチ周波数チャネルアテンション機構(MFCA)と2次元離散コサイン変換(DCT)に基づくディープフェイク検出手法を提案する。
音声信号をメルスペクトログラムに処理し、MobileNet V2を用いて深い特徴を抽出し、MFCAモジュールと組み合わせて音声信号の異なる周波数チャネルを重み付けすることにより、音声信号の微細な周波数領域の特徴を効果的に把握し、偽音声の分類能力を向上することができる。
実験の結果,従来の手法と比較して,精度,精度,リコール,F1スコア,その他の指標において有意な優位性を示した。
特に複雑な音声シナリオにおいて、この手法は強い強靭性と一般化能力を示し、オーディオディープフェイク検出のための新しいアイデアを提供し、重要な実用的価値を有する。
将来的には,より高度な音声検出技術と最適化戦略が検討され,オーディオディープフェイク検出の精度と一般化能力が向上する。
関連論文リスト
- Efficient Streaming Voice Steganalysis in Challenging Detection Scenarios [13.049308869863248]
本稿ではDVSF(Dual-View VoIP Steganalysis Framework)を紹介する。
このフレームワークは、VoIPストリームセグメント内のネイティブステガノグラフ記述子の一部をランダムに難読化する。
次に、VoIPのグローバル機能に基づいて、ステガノグラフィーに関連するきめ細かい局所的特徴をキャプチャする。
論文 参考訳(メタデータ) (2024-11-20T02:22:58Z) - Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - Statistics-aware Audio-visual Deepfake Detector [11.671275975119089]
オーディオ・ヴィジュアルフェイク検出の手法は、主に音声と視覚の特徴の同期を評価する。
モデルの識別能力を高めるため,統計的特徴損失を提案する。
DFDCおよびFakeAVCelebデータセットの実験により,提案手法の妥当性が示された。
論文 参考訳(メタデータ) (2024-07-16T12:15:41Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Proactive Detection of Voice Cloning with Localized Watermarking [50.13539630769929]
本稿では,AI生成音声の局所検出に特化して設計された,最初の音声透かし技術であるAudioSealを紹介する。
AudioSealは、ローカライゼーションロスと共同でトレーニングされたジェネレータ/検出器アーキテクチャを使用して、サンプルレベルまでローカライズされた透かし検出を可能にする。
AudioSealは、実生活のオーディオ操作に対する堅牢性と、自動的および人的評価指標に基づく非知覚性の観点から、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-30T18:56:22Z) - What to Remember: Self-Adaptive Continual Learning for Audio Deepfake
Detection [53.063161380423715]
既存の検出モデルは、既知のディープフェイク音声を識別することに成功したが、新しい攻撃タイプに遭遇する際には苦労している。
本稿では,Radian Weight Modification (RWM) と呼ばれる連続的な学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T09:52:17Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
近年の超現実的なディープフェイクビデオの普及は、オーディオと視覚の偽造の脅威に注意を向けている。
AI生成のフェイクビデオの検出に関するこれまでのほとんどの研究は、視覚的モダリティまたはオーディオ的モダリティのみを使用していた。
音響操作と視覚操作の両方を考慮したAVTENet(Audio-Visual Transformer-based Ensemble Network)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T19:01:26Z) - DF-TransFusion: Multimodal Deepfake Detection via Lip-Audio
Cross-Attention and Facial Self-Attention [13.671150394943684]
本稿では,ディープフェイク検出タスクのための音声とビデオの同時処理を目的とした,新しいマルチモーダルオーディオ・ビデオ・フレームワークを提案する。
本モデルでは,細調整VGG-16ネットワークを介して視覚的手がかりを抽出しながら,入力音声による唇の同期に重きを置いている。
論文 参考訳(メタデータ) (2023-09-12T18:37:05Z) - Realtime Spectrum Monitoring via Reinforcement Learning -- A Comparison
Between Q-Learning and Heuristic Methods [0.0]
利用可能なレシーバリソースを制御するための2つのアプローチを比較した。
使用するQ-ラーニングアルゴリズムは、より少ない探索率を犠牲にして、アプローチよりもはるかに高い検出率を有する。
論文 参考訳(メタデータ) (2023-07-11T19:40:02Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
既存のマルチモーダル検出手法は、Deepfakeビデオを公開するために、音声と視覚の不整合をキャプチャする。
NPVForensics と呼ばれる非臨界音素とビセムの相関関係を抽出する新しいディープフェイク検出法を提案する。
我々のモデルは、微調整で下流のDeepfakeデータセットに容易に適応できる。
論文 参考訳(メタデータ) (2023-06-12T06:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。