STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
- URL: http://arxiv.org/abs/2412.09468v2
- Date: Wed, 15 Jan 2025 05:25:35 GMT
- Title: STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
- Authors: Yilei Zhao, Wentao Zhang, Tingran Yang, Yong Jiang, Fei Huang, Wei Yang Bryan Lim,
- Abstract summary: In financial trading, factor models are widely used to price assets and capture excess returns from mispricing.
We propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM.
Storm extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings.
- Score: 55.02735046724146
- License:
- Abstract: In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
Related papers
- FactorGCL: A Hypergraph-Based Factor Model with Temporal Residual Contrastive Learning for Stock Returns Prediction [16.70420232738428]
We propose a hypergraph-based factor model with temporal residual contrastive learning (FactorGCL)
To mine hidden factors that supplement human-designed prior factors for predicting stock returns, we design a cascading residual hypergraph architecture.
Our experiments on real stock market data demonstrate that FactorGCL outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2025-02-05T12:37:15Z) - KAN based Autoencoders for Factor Models [13.512750745176664]
Inspired by recent advances in Kolmogorov-Arnold Networks (KANs), we introduce a novel approach to latent factor conditional asset pricing models.
Our method introduces a KAN-based autoencoder which surpasses models in both accuracy and interpretability.
Our model offers enhanced flexibility in approximating exposures as nonlinear functions of asset characteristics, while simultaneously providing users with an intuitive framework for interpreting latent factors.
arXiv Detail & Related papers (2024-08-04T02:02:09Z) - How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition [64.86360698067764]
This study focuses on the interplay of data composition between mathematical reasoning, code generation, and general human-aligning abilities during supervised fine-tuning.
Our experiments reveal that distinct capabilities scale differently and larger models generally show superior performance with same amount of data.
Our findings suggest the amount of composition data influences performance more than the composition ratio.
arXiv Detail & Related papers (2023-10-09T07:56:16Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
arXiv Detail & Related papers (2023-03-14T14:10:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and
Feature Selection for Financial Data Analysis [22.035287788330663]
We propose DoubleEnsemble, an ensemble framework leveraging learning trajectory based sample reweighting and shuffling based feature selection.
Our model is applicable to a wide range of base models, capable of extracting complex patterns, while mitigating the overfitting and instability issues for financial market prediction.
arXiv Detail & Related papers (2020-10-03T02:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.