Experimental Machine Learning with Classical and Quantum Data via NMR Quantum Kernels
- URL: http://arxiv.org/abs/2412.09557v1
- Date: Thu, 12 Dec 2024 18:44:38 GMT
- Title: Experimental Machine Learning with Classical and Quantum Data via NMR Quantum Kernels
- Authors: Vivek Sabarad, T. S. Mahesh,
- Abstract summary: We implement quantum kernels on a 10-qubit star-topology register in a nuclear magnetic resonance (NMR) platform.
We experimentally encode classical data in the evolution of multiple quantum coherence orders.
We show that quantum kernels exhibit strong capabilities in classical as well as quantum machine learning tasks.
- Score: 0.0
- License:
- Abstract: Kernel methods map data into high-dimensional spaces, enabling linear algorithms to learn nonlinear functions without explicitly storing the feature vectors. Quantum kernel methods promise efficient learning by encoding feature maps into exponentially large Hilbert spaces inherent in quantum systems. In this work we implement quantum kernels on a 10-qubit star-topology register in a nuclear magnetic resonance (NMR) platform. We experimentally encode classical data in the evolution of multiple quantum coherence orders using data-dependent unitary transformations and then demonstrate one-dimensional regression and two-dimensional classification tasks. By extending the register to a double-layered star configuration, we propose an extended quantum kernel to handle non-parametrized operator inputs. By numerically simulating the extended quantum kernel, we show classification of entangling and nonentangling unitaries. These results confirm that quantum kernels exhibit strong capabilities in classical as well as quantum machine learning tasks.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Continuous-variable quantum kernel method on a programmable photonic quantum processor [0.0]
We experimentally prove that the CV quantum kernel method successfully classifies several datasets robustly even under the experimental imperfections.
This demonstration sheds light on the utility of CV quantum systems for QML and should stimulate further study in other CV QML algorithms.
arXiv Detail & Related papers (2024-05-02T08:33:31Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Quantum kernels with squeezed-state encoding for machine learning [0.0]
We generalize quantum kernel methods by encoding data into continuous-variable quantum states.
The kernels can be calculated on a quantum computer and then are combined with classical machine learning.
arXiv Detail & Related papers (2021-08-25T08:24:54Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
arXiv Detail & Related papers (2021-06-17T12:02:01Z) - Quantum-enhanced bosonic learning machine [0.0]
We show a quantum-enhanced bosonic learning machine operating on quantum data with a system of trapped ions.
We implement the unsupervised K-means algorithm to recognize a pattern in a set of high-dimensional quantum states.
We use the discovered knowledge to classify unknown quantum states with the supervised k-NN algorithm.
arXiv Detail & Related papers (2021-04-09T02:44:57Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - Quantum embeddings for machine learning [5.16230883032882]
Quantum classifiers are trainable quantum circuits used as machine learning models.
We propose to train the first part of the circuit -- the embedding -- with the objective of maximally separating data classes in Hilbert space.
This approach provides a powerful analytic framework for quantum machine learning.
arXiv Detail & Related papers (2020-01-10T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.