DISHONEST: Dissecting misInformation Spread using Homogeneous sOcial NEtworks and Semantic Topic classification
- URL: http://arxiv.org/abs/2412.09578v1
- Date: Thu, 12 Dec 2024 18:53:46 GMT
- Title: DISHONEST: Dissecting misInformation Spread using Homogeneous sOcial NEtworks and Semantic Topic classification
- Authors: Caleb Stam, Emily Saldanha, Mahantesh Halappanavar, Anurag Acharya,
- Abstract summary: COVID-19 pandemic resulted in a significant rise in spread of misinformation on online platforms such as Twitter.
We use Twitter's network of retweets to study social interactions and topic modeling to study tweet content.
- Score: 2.6356166840419717
- License:
- Abstract: The emergence of the COVID-19 pandemic resulted in a significant rise in the spread of misinformation on online platforms such as Twitter. Oftentimes this growth is blamed on the idea of the "echo chamber." However, the behavior said to characterize these echo chambers exists in two dimensions. The first is in a user's social interactions, where they are said to stick with the same clique of like-minded users. The second is in the content of their posts, where they are said to repeatedly espouse homogeneous ideas. In this study, we link the two by using Twitter's network of retweets to study social interactions and topic modeling to study tweet content. In order to measure the diversity of a user's interactions over time, we develop a novel metric to track the speed at which they travel through the social network. The application of these analysis methods to misinformation-focused data from the pandemic demonstrates correlation between social behavior and tweet content. We believe this correlation supports the common intuition about how antisocial users behave, and further suggests that it holds even in subcommunities already rife with misinformation.
Related papers
- Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter [4.62503518282081]
Social media users drive the spread of misinformation online by sharing posts that include erroneous information or commenting on controversial topics.
This work explores how conversations around misinformation are mediated through language use.
arXiv Detail & Related papers (2024-04-24T15:37:12Z) - Hatemongers ride on echo chambers to escalate hate speech diffusion [23.714548893849393]
We analyze more than 32 million posts from over 6.8 million users across three popular online social networks.
We find that hatemongers play a more crucial role in governing the spread of information compared to singled-out hateful content.
arXiv Detail & Related papers (2023-02-05T20:30:48Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - Analyzing Behavioral Changes of Twitter Users After Exposure to
Misinformation [1.8251012479962594]
We aim to understand whether general Twitter users changed their behavior after being exposed to misinformation.
We compare the before and after behavior of exposed users to determine whether the frequency of the tweets they posted underwent any significant change.
We also study the characteristics of two specific user groups, multi-exposure and extreme change groups, which were potentially highly impacted.
arXiv Detail & Related papers (2021-11-01T04:48:07Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
This work provides a characterization of the interaction patterns within Gab around the COVID-19 topic.
We find that there are no strong statistical differences in the social response to questionable and reliable content.
Our results provide insights toward the understanding of coordinated inauthentic behavior and on the early-warning of information operation.
arXiv Detail & Related papers (2020-06-03T11:34:25Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z) - #MeToo on Campus: Studying College Sexual Assault at Scale Using Data
Reported on Social Media [71.74529365205053]
We analyze the influence of the # trend on a pool of college followers.
The results show that the majority of topics embedded in those # tweets detail sexual harassment stories.
There exists a significant correlation between the prevalence of this trend and official reports on several major geographical regions.
arXiv Detail & Related papers (2020-01-16T18:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.