Assisted morbidity coding: the SISCO.web use case for identifying the main diagnosis in Hospital Discharge Records
- URL: http://arxiv.org/abs/2412.09651v1
- Date: Wed, 11 Dec 2024 16:08:25 GMT
- Title: Assisted morbidity coding: the SISCO.web use case for identifying the main diagnosis in Hospital Discharge Records
- Authors: Elena Cardillo, Lucilla Frattura,
- Abstract summary: The paper aims to present the SISCO.web approach designed to support physicians in filling in Hospital Discharge Records with proper diagnoses and procedures codes.
The web service leverages NLP algorithms, specific coding rules, as well as ad hoc decision trees to identify the main condition.
- Score: 0.0
- License:
- Abstract: Coding morbidity data using international standard diagnostic classifications is increasingly important and still challenging. Clinical coders and physicians assign codes to patient episodes based on their interpretation of case notes or electronic patient records. Therefore, accurate coding relies on the legibility of case notes and the coders' understanding of medical terminology. During the last ten years, many studies have shown poor reproducibility of clinical coding, even recently, with the application of Artificial Intelligence-based models. Given this context, the paper aims to present the SISCO.web approach designed to support physicians in filling in Hospital Discharge Records with proper diagnoses and procedures codes using the International Classification of Diseases (9th and 10th), and, above all, in identifying the main pathological condition. The web service leverages NLP algorithms, specific coding rules, as well as ad hoc decision trees to identify the main condition, showing promising results in providing accurate ICD coding suggestions.
Related papers
- NoteContrast: Contrastive Language-Diagnostic Pretraining for Medical Text [0.0]
We develop an approach based on i) models for ICD-10 diagnostic code sequences using a large real-world data set, ii) large language models for medical notes, andiii) contrastive pre-training to build an integrated model of both ICD-10 diagnostic codes and corresponding medical text.
We demonstrate that a contrastive approach for pre-training improves performance over prior state-of-the-art models for the MIMIC-III-50, MIMIC-III-rare50, and MIMIC-III-full diagnostic coding tasks.
arXiv Detail & Related papers (2024-12-16T06:44:39Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
We propose a novel approach for ICD indexing that adopts three ideas.
We use a multi-level deep dilated residual convolution encoder to aggregate the information from the clinical notes.
We formalize the task of ICD classification with auxiliary knowledge of the medical records.
arXiv Detail & Related papers (2024-05-29T13:44:07Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - Automatic Coding at Scale: Design and Deployment of a Nationwide System
for Normalizing Referrals in the Chilean Public Healthcare System [0.0]
We propose a two-step system for automatically coding diseases in referrals from the Chilean public healthcare system.
Specifically, our model uses a state-of-the-art NER model for recognizing disease mentions and a search engine system based on for assigning the most relevant codes associated with these disease mentions.
Our system obtained a MAP score of 0.63 for the subcategory level and 0.83 for the category level, close to the best-performing models in the literature.
arXiv Detail & Related papers (2023-07-09T16:19:35Z) - Medical Codes Prediction from Clinical Notes: From Human Coders to
Machines [0.21320960069210473]
Prediction of medical codes from clinical notes is a practical and essential need for every healthcare delivery organization.
The biggest challenge is directly identifying appropriate medical codes from several thousands of high-dimensional codes from unstructured free-text clinical notes.
Recent studies have shown the state-of-the-art code prediction results of full-fledged deep learning-based methods.
arXiv Detail & Related papers (2022-10-30T14:24:13Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
We present an explainable Read, Attend, and Code (xRAC) framework and assess two approaches, attention score-based xRAC-ATTN and model-agnostic knowledge-distillation-based xRAC-KD.
We find that the supporting evidence text highlighted by xRAC-ATTN is of higher quality than xRAC-KD whereas xRAC-KD has potential advantages in production deployment scenarios.
arXiv Detail & Related papers (2022-10-28T04:06:07Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
Contextual word embedding models have achieved state-of-the-art results in multiple NLP tasks.
ICDBigBird is a BigBird-based model which can integrate a Graph Convolutional Network (GCN)
Our experiments on a real-world clinical dataset demonstrate the effectiveness of our BigBird-based model on the ICD classification task.
arXiv Detail & Related papers (2022-04-21T20:59:56Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.