論文の概要: DQA: An Efficient Method for Deep Quantization of Deep Neural Network Activations
- arxiv url: http://arxiv.org/abs/2412.09687v1
- Date: Thu, 12 Dec 2024 19:03:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:04:24.047343
- Title: DQA: An Efficient Method for Deep Quantization of Deep Neural Network Activations
- Title(参考訳): DQA:Deep Neural Network Activationの深部量子化のための効率的な方法
- Authors: Wenhao Hu, Paul Henderson, José Cano,
- Abstract要約: ディープニューラルネットワーク(DNN)のアクティベーションの量子化は、推論時の計算とメモリ要求を減らすために一般的に用いられる手法である。
DQA(Deep Quantization of DNN Activations)は,アクティベーションのサブ6ビット量子化に着目した新しい手法である。
直接量子化法と準6ビット量子化のための最先端のNoisyQuantと比較して、精度が(最大29.28%)大幅に向上した。
- 参考スコア(独自算出の注目度): 5.107302670511175
- License:
- Abstract: Quantization of Deep Neural Network (DNN) activations is a commonly used technique to reduce compute and memory demands during DNN inference, which can be particularly beneficial on resource-constrained devices. To achieve high accuracy, existing methods for quantizing activations rely on complex mathematical computations or perform extensive searches for the best hyper-parameters. However, these expensive operations are impractical on devices with limited computation capabilities, memory capacities, and energy budgets. Furthermore, many existing methods do not focus on sub-6-bit (or deep) quantization. To fill these gaps, in this paper we propose DQA (Deep Quantization of DNN Activations), a new method that focuses on sub-6-bit quantization of activations and leverages simple shifting-based operations and Huffman coding to be efficient and achieve high accuracy. We evaluate DQA with 3, 4, and 5-bit quantization levels and three different DNN models for two different tasks, image classification and image segmentation, on two different datasets. DQA shows significantly better accuracy (up to 29.28%) compared to the direct quantization method and the state-of-the-art NoisyQuant for sub-6-bit quantization.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)のアクティベーションの量子化は、DNN推論時の計算とメモリ要求を減らすために一般的に使用される手法であり、リソース制約のあるデバイスでは特に有用である。
高い精度を達成するために、アクティベーションを定量化するための既存の手法は、複雑な数学的計算に依存するか、最高のハイパーパラメータを広範囲に探索する。
しかし、これらの高価な操作は、限られた計算能力、メモリ容量、エネルギー予算を持つデバイスでは実用的ではない。
さらに、既存の多くの手法は、サブ6ビット(またはディープ)量子化に重点を置いていない。
このギャップを埋めるために,DQA(Deep Quantization of DNN Activations)を提案する。これは,アクティベーションのサブ6ビット量子化に着目し,単純なシフトベース演算とHuffman符号化を活用して効率よく,高精度を実現する手法である。
DQAを3,4,5ビットの量子化レベルと3つの異なるDNNモデルで評価した。
DQAは、サブ6ビット量子化のための直接量子化法と最先端のNoisyQuantと比較して、かなり精度(最大29.28%)が良い。
関連論文リスト
- On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Edge Inference with Fully Differentiable Quantized Mixed Precision
Neural Networks [1.131071436917293]
パラメータと演算をビット精度の低いものに量子化することで、ニューラルネットワークの推論にかなりのメモリとエネルギーを節約できる。
本稿では,エッジ計算を対象とする混合精度畳み込みニューラルネットワーク(CNN)の量子化手法を提案する。
論文 参考訳(メタデータ) (2022-06-15T18:11:37Z) - A Comprehensive Survey on Model Quantization for Deep Neural Networks in
Image Classification [0.0]
有望なアプローチは量子化であり、完全な精度の値は低ビット幅の精度で保存される。
本稿では、画像分類に焦点をあてて、量子化の概念と方法に関する包括的調査を行う。
本稿では,量子化DNNにおける浮動小数点演算の低コストなビット演算への置き換えと,量子化における異なる層の感度について説明する。
論文 参考訳(メタデータ) (2022-05-14T15:08:32Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z) - DNN Quantization with Attention [5.72175302235089]
低ビット量子化を緩和するトレーニング手順を提案する。
この緩和は、高、中、低ビット量子化の学習可能な線形結合を用いて達成される。
実験では、他の低ビット量子化技術よりも優れている。
論文 参考訳(メタデータ) (2021-03-24T16:24:59Z) - n-hot: Efficient bit-level sparsity for powers-of-two neural network
quantization [0.0]
パワーオブツー(PoT)量子化は、リソース制約ハードウェア上でのディープニューラルネットワークのビット演算数を減少させる。
PoT量子化は、表現能力が限られているため、深刻な精度低下を引き起こす。
メモリ効率の高い方法で精度とコストを両立した効率的なPoT量子化方式を提案する。
論文 参考訳(メタデータ) (2021-03-22T10:13:12Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
本稿では,低ビット幅重みとアクティベーションで深部畳み込みニューラルネットワークを訓練する2つの新しい手法を提案する。
まず、ビット幅の少ない重みを得るため、既存の方法の多くは、全精度ネットワーク重みで量子化することにより量子化重みを得る。
第二に、低ビット幅のアクティベーションを得るために、既存の作品はすべてのチャネルを等しく考慮する。
論文 参考訳(メタデータ) (2020-12-26T15:21:18Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
本稿では,ネットワークアーキテクチャ検索手法と量子化手法を組み合わせることで,両者のメリットを享受することを提案する。
まず、多数の量子化モデルを取得するために、共有ステップサイズでアーキテクチャと量子化の合同トレーニングを提案する。
次に、量子化されたモデルを低ビットに転送するためにビット継承方式を導入し、さらに時間コストを削減し、量子化精度を向上させる。
論文 参考訳(メタデータ) (2020-10-09T03:52:16Z) - MSP: An FPGA-Specific Mixed-Scheme, Multi-Precision Deep Neural Network
Quantization Framework [39.43144643349916]
本稿では,ディープラーニングエッジコンピューティングのハードウェアプラットフォームとして一般的に使用されているFPGAデバイスを対象としている。
線形数と非線形数の両方を量子化に組み込んだ混合スキームDNN量子化法を提案する。
我々は,層間次元に沿って複数の精度をサポートする量子化法を用い,既存の量子化法は層間次元に沿って多重精度の量子化を適用する。
論文 参考訳(メタデータ) (2020-09-16T04:24:18Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。