Towards joint graph learning and sampling set selection from data
- URL: http://arxiv.org/abs/2412.09753v2
- Date: Mon, 16 Dec 2024 20:35:27 GMT
- Title: Towards joint graph learning and sampling set selection from data
- Authors: Shashank N. Sridhara, Eduardo Pavez, Antonio Ortega,
- Abstract summary: We explore the problem of sampling graph signals in scenarios where the graph structure is not predefined.<n>Existing approaches rely on a two-step process, where a graph is learned first, followed by sampling.<n>This work provides a foundational step towards jointly optimizing the graph structure and sampling set.
- Score: 27.52699981080567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the problem of sampling graph signals in scenarios where the graph structure is not predefined and must be inferred from data. In this scenario, existing approaches rely on a two-step process, where a graph is learned first, followed by sampling. More generally, graph learning and graph signal sampling have been studied as two independent problems in the literature. This work provides a foundational step towards jointly optimizing the graph structure and sampling set. Our main contribution, Vertex Importance Sampling (VIS), is to show that the sampling set can be effectively determined from the vertex importance (node weights) obtained from graph learning. We further propose Vertex Importance Sampling with Repulsion (VISR), a greedy algorithm where spatially -separated "important" nodes are selected to ensure better reconstruction. Empirical results on simulated data show that sampling using VIS and VISR leads to competitive reconstruction performance and lower complexity than the conventional two-step approach of graph learning followed by graph sampling.
Related papers
- Pure Exploration with Feedback Graphs [23.16863295063427]
We study the sample complexity of pure exploration in an online learning problem with a feedback graph.
We derive an instance-specific lower bound on the sample complexity of learning the best action with fixed confidence.
Our findings reveal how the sample complexity scales with key graph-dependent quantities.
arXiv Detail & Related papers (2025-03-10T20:11:59Z) - Mitigating Label Noise on Graph via Topological Sample Selection [72.86862597508077]
We propose a $textitTopological Sample Selection$ (TSS) method that boosts the informative sample selection process in a graph by utilising topological information.
We theoretically prove that our procedure minimizes an upper bound of the expected risk under target clean distribution, and experimentally show the superiority of our method compared with state-of-the-art baselines.
arXiv Detail & Related papers (2024-03-04T11:24:51Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Entropy Neural Estimation for Graph Contrastive Learning [9.032721248598088]
Contrastive learning on graphs aims at extracting distinguishable high-level representations of nodes.
We propose a simple yet effective subset sampling strategy to contrast pairwise representations between views of a dataset.
We conduct extensive experiments on seven graph benchmarks, and the proposed approach achieves competitive performance.
arXiv Detail & Related papers (2023-07-26T03:55:08Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Semi-supervised Superpixel-based Multi-Feature Graph Learning for
Hyperspectral Image Data [0.0]
We present a novel framework for the classification of Hyperspectral Image (HSI) data in light of a very limited amount of labelled data.
We propose a multi-stage edge-efficient semi-supervised graph learning framework for HSI data.
arXiv Detail & Related papers (2021-04-27T15:36:26Z) - Recognizing Predictive Substructures with Subgraph Information
Bottleneck [97.19131149357234]
We propose a novel subgraph information bottleneck (SIB) framework to recognize such subgraphs, named IB-subgraph.
Intractability of mutual information and the discrete nature of graph data makes the objective of SIB notoriously hard to optimize.
Experiments on graph learning and large-scale point cloud tasks demonstrate the superior property of IB-subgraph.
arXiv Detail & Related papers (2021-03-20T11:19:43Z) - Graph Information Bottleneck for Subgraph Recognition [103.37499715761784]
We propose a framework of Graph Information Bottleneck (GIB) for the subgraph recognition problem in deep graph learning.
Under this framework, one can recognize the maximally informative yet compressive subgraph, named IB-subgraph.
We evaluate the properties of the IB-subgraph in three application scenarios: improvement of graph classification, graph interpretation and graph denoising.
arXiv Detail & Related papers (2020-10-12T09:32:20Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.