waveOrder: generalist framework for label-agnostic computational microscopy
- URL: http://arxiv.org/abs/2412.09775v2
- Date: Fri, 20 Dec 2024 22:52:02 GMT
- Title: waveOrder: generalist framework for label-agnostic computational microscopy
- Authors: Talon Chandler, Eduardo Hirata-Miyasaki, Ivan E. Ivanov, Ziwen Liu, Deepika Sundarraman, Allyson Quinn Ryan, Adrian Jacobo, Keir Balla, Shalin B. Mehta,
- Abstract summary: Correlative computational microscopy is accelerating the mapping of dynamic biological systems.
We report a framework for wave optical imaging of the architectural order (waveOrder) among biomolecules.
We implement multiple 3D computational microscopy methods, including quantitative phase imaging, quantitative label-free imaging with phase and polarization, and fluorescence deconvolution imaging.
- Score: 0.337054351451505
- License:
- Abstract: Correlative computational microscopy is accelerating the mapping of dynamic biological systems by integrating morphological and molecular measurements across spatial scales, from organelles to entire organisms. Visualization, measurement, and prediction of interactions among the components of biological systems can be accelerated by generalist computational imaging frameworks that relax the trade-offs imposed by multiplex dynamic imaging. This work reports a generalist framework for wave optical imaging of the architectural order (waveOrder) among biomolecules for encoding and decoding multiple specimen properties from a minimal set of acquired channels, with or without fluorescent labels. waveOrder expresses material properties in terms of elegant physically motivated basis vectors directly interpretable as phase, absorption, birefringence, diattenuation, and fluorophore density; and it expresses image data in terms of directly measurable Stokes parameters. We report a corresponding multi-channel reconstruction algorithm to recover specimen properties in multiple contrast modes. With this framework, we implement multiple 3D computational microscopy methods, including quantitative phase imaging, quantitative label-free imaging with phase and polarization, and fluorescence deconvolution imaging, across scales ranging from organelles to whole zebrafish. These advances are available via an extensible open-source computational imaging library, waveOrder, and a napari plugin, recOrder.
Related papers
- Novel computational workflows for natural and biomedical image processing based on hypercomplex algebras [49.81327385913137]
Hypercomplex image processing extends conventional techniques in a unified paradigm encompassing algebraic and geometric principles.
This workleverages quaternions and the two-dimensional planes split framework (splitting of a quaternion - representing a pixel - into pairs of 2D planes) for natural/biomedical image analysis.
The proposed can regulate color appearance (e.g. with alternative renditions and grayscale conversion) and image contrast, be part of automated image processing pipelines.
arXiv Detail & Related papers (2025-02-11T18:38:02Z) - Invariant Discovery of Features Across Multiple Length Scales: Applications in Microscopy and Autonomous Materials Characterization [3.386918190302773]
Variational Autoencoders (VAEs) have emerged as powerful tools for identifying underlying factors of variation in image data.
We introduce the scale-invariant VAE approach (SI-VAE) based on the progressive training of the VAE with the descriptors sampled at different length scales.
arXiv Detail & Related papers (2024-08-01T01:48:46Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Fluctuation-based deconvolution in fluorescence microscopy using
plug-and-play denoisers [2.236663830879273]
spatial resolution of images of living samples obtained by fluorescence microscopes is physically limited due to the diffraction of visible light.
Several deconvolution and super-resolution techniques have been proposed to overcome this limitation.
arXiv Detail & Related papers (2023-03-20T15:43:52Z) - Quantum enhanced probing of multilayered-samples [0.0]
Quantum Optical Coherence Tomography relies on non-classical light sources to reconstruct the internal structure of multilayered materials.
Here, by utilizing a full theoretical model, in combination with a fast genetic algorithm to post-process the data, we successfully extract the morphology of complex multilayered samples.
Our results could potentially lead to the development of practical high-resolution probing of complex structures.
arXiv Detail & Related papers (2022-12-25T21:22:25Z) - Synplex: A synthetic simulator of highly multiplexed histological images [2.816013261482056]
We present Synplex, a simulation system able to generate multiplex immunostained in situ tissue images.
Synplex consists of three sequential modules, each being responsible for a separate task.
We believe it will become a valuable tool for the training and/or validation of multiplex image analysis algorithms.
arXiv Detail & Related papers (2021-03-08T09:12:02Z) - Data-Driven Discovery of Molecular Photoswitches with Multioutput
Gaussian Processes [51.17758371472664]
Photoswitchable molecules display two or more isomeric forms that may be accessed using light.
We present a data-driven discovery pipeline for molecular photoswitches underpinned by dataset curation and multitask learning.
We validate our proposed approach experimentally by screening a library of commercially available photoswitchable molecules.
arXiv Detail & Related papers (2020-06-28T20:59:03Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.