A high optical access cryogenic system for Rydberg atom arrays with a 3000-second trap lifetime
- URL: http://arxiv.org/abs/2412.09780v1
- Date: Fri, 13 Dec 2024 01:23:34 GMT
- Title: A high optical access cryogenic system for Rydberg atom arrays with a 3000-second trap lifetime
- Authors: Zhenpu Zhang, Ting-Wei Hsu, Ting You Tan, Daniel H. Slichter, Adam M. Kaufman, Matteo Marinelli, Cindy A. Regal,
- Abstract summary: We present an optical tweezer array of $87$Rb atoms housed in a cryogenic environment.
We demonstrate a 3000 s atom trap lifetime, which enables us to optimize and measure losses.
- Score: 0.06282171844772422
- License:
- Abstract: We present an optical tweezer array of $^{87}$Rb atoms housed in an cryogenic environment that successfully combines a 4 K cryopumping surface, a <50 K cold box surrounding the atoms, and a room-temperature high-numerical-aperture objective lens. We demonstrate a 3000 s atom trap lifetime, which enables us to optimize and measure losses at the $10^{-4}$ level that arise during imaging and cooling, which are important to array rearrangement. We perform both ground-state qubit manipulation with an integrated microwave antenna and two-photon coherent Rydberg control, with the local electric field tuned to zero via integrated electrodes. We anticipate that the reduced blackbody radiation at the atoms from the cryogenic environment, combined with future electrical shielding, should decrease the rate of undesired transitions to nearby strongly-interacting Rydberg states, which cause many-body loss and impede Rydberg gates. This low-vibration, high-optical-access cryogenic platform can be used with a wide range of optically trapped atomic or molecular species for applications in quantum computing, simulation, and metrology.
Related papers
- Quadrupole coupling of circular Rydberg qubits to inner shell excitations [0.0]
Divalent atoms provide excellent means for advancing control in Rydberg atom-based quantum simulation and computing.
We report the implementation of electric quadrupole coupling between the metastable 4D$_3/2$ level and a very high-$n$ ($n=79$) circular Rydberg qubit.
Our results demonstrate access to weak electron-electron interactions in Rydberg atoms and expand the quantum simulation toolbox for optical control of highly excited circular state qubits.
arXiv Detail & Related papers (2024-05-30T20:54:35Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - High-fidelity detection of large-scale atom arrays in an optical lattice [0.0]
We demonstrate high-fidelity imaging of strontium atoms using repulsive Sisyphus cooling.
We use an optical lattice as a pinning potential for atoms in a large-scale tweezer array with up to $399$ tweezers.
arXiv Detail & Related papers (2023-09-09T08:10:07Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Continuous wideband microwave-to-optical converter based on
room-temperature Rydberg atoms [0.0]
We employ Rydberg atoms that allow for the natural wideband coupling of optical and microwave photons even at room temperature and with the use of a modest setup.
We present continuous-wave conversion of a $13.9 mathrmGHz$ field to a near-infrared optical signal using an ensemble of Rydberg atoms via a free-space six-wave mixing process.
The Rydberg photonic converter exhibits an unprecedented conversion dynamic range of $57 mathrmdB$ and a wide conversion bandwidth of $16 mathrmMHz$.
arXiv Detail & Related papers (2023-02-16T15:49:50Z) - CubeSat in-orbit validation of in-situ performance by high fidelity
radiation modelling [55.41644538483948]
The SpooQy-1 CubeSat mission demonstrated polarization-based quantum entanglement correlations using avalanche photodiodes for single-photon detection.
We report the increasing dark count rates of two silicon Geiger-mode avalanche photodiodes observed throughout its 2 year orbital lifetime.
We implement a high-fidelity radiation model combined with 3D computer aided design models of the SpooQy-1 CubeSat to estimate the accumulated displacement damage dose in each photodiode.
arXiv Detail & Related papers (2022-09-01T12:33:27Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Single Atoms with 6000-Second Trapping Lifetimes in Optical-Tweezer
Arrays at Cryogenic Temperatures [0.0]
We describe the design and construction of the experimental apparatus, based on a custom-made, UHV compatible, closed-cycle cryostat with optical access.
We demonstrate the trapping of single atoms in cryogenic arrays of optical tweezers, with lifetimes in excess of $sim6000$ s, despite the fact that the vacuum system has not been baked out.
arXiv Detail & Related papers (2021-06-14T13:25:12Z) - Quantum Computing with Circular Rydberg Atoms [0.0]
We propose a novel approach to Rydberg atom arrays using long-lived circular Rydberg states in optical traps.
We project that arrays of hundreds of circular Rydberg atoms with two-qubit gate errors around $10-5$ can be realized using current technology.
arXiv Detail & Related papers (2021-03-23T18:00:00Z) - Open-cavity in closed-cycle cryostat as a quantum optics platform [47.50219326456544]
We present a fiber-based open Fabry-P'erot cavity in a closed-cycle cryostat exhibiting ultra-high mechanical stability.
This set of results manifests open-cavity in a closed-cycle cryostat as a versatile and powerful platform for low-temperature cavity QED experiments.
arXiv Detail & Related papers (2021-03-09T18:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.