Quantum Computing with Circular Rydberg Atoms
- URL: http://arxiv.org/abs/2103.12744v1
- Date: Tue, 23 Mar 2021 18:00:00 GMT
- Title: Quantum Computing with Circular Rydberg Atoms
- Authors: Sam R. Cohen, Jeff D. Thompson
- Abstract summary: We propose a novel approach to Rydberg atom arrays using long-lived circular Rydberg states in optical traps.
We project that arrays of hundreds of circular Rydberg atoms with two-qubit gate errors around $10-5$ can be realized using current technology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg atom arrays are a leading platform for quantum computing and
simulation, combining strong interactions with highly coherent operations and
flexible geometries. However, the achievable fidelities are limited by the
finite lifetime of the Rydberg states, as well as technical imperfections such
as atomic motion. In this work, we propose a novel approach to Rydberg atom
arrays using long-lived circular Rydberg states in optical traps. Based on the
extremely long lifetime of these states, exceeding seconds in cryogenic
microwave cavities that suppress radiative transitions, and gate protocols that
are robust to finite atomic temperature, we project that arrays of hundreds of
circular Rydberg atoms with two-qubit gate errors around $10^{-5}$ can be
realized using current technology. This approach combines several key elements,
including a quantum nondemolition detection technique for circular Rydberg
states, local manipulation using the ponderomotive potential of focused optical
beams, a gate protocol using multiple circular levels to encode qubits, and
robust dynamical decoupling sequences to suppress unwanted interactions and
errors from atomic motion. This represents a significant improvement on the
current state-of-the-art in quantum computing and simulation with neutral
atoms.
Related papers
- Fast entangling gates for Rydberg atoms via resonant dipole-dipole interaction [0.0]
We introduce a novel scheme for entangling gates using four atomic levels per atom: a ground state qubit and two Rydberg states.
We show that this interaction can mediate controlled-Z gates that are faster and less sensitive to Rydberg decay than state-of-the-art Rydberg gates.
arXiv Detail & Related papers (2024-11-07T19:00:08Z) - Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Long-Lived Circular Rydberg Qubits of Alkaline-Earth Atoms in Optical
Tweezers [0.0]
Coherence time and gate fidelities in Rydberg atom quantum simulators and computers are fundamentally limited by the Rydberg state lifetime.
Circular Rydberg states are highly promising candidates to overcome this limitation by orders of magnitude.
We report the first realization of alkaline-earth circular Rydberg atoms trapped in optical tweezers.
arXiv Detail & Related papers (2024-01-19T11:07:47Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Optical coherent manipulation of alkaline-earth circular Rydberg states [0.0]
We show how to use the electrostatic coupling between the two electrons of strontium to coherently manipulate a circular Rydberg state with optical pulses.
This experiment opens the way to a state-selective spatially-resolved non-destructive detection of the circular states.
arXiv Detail & Related papers (2021-11-29T12:52:09Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Electron cloud design for Rydberg multi-qubit gates [0.0]
This article proposes quantum processing in an optical lattice, using Rydberg electron's Fermi scattering from ground-state atoms.
The interaction is controlled by engineering the electron cloud of a sole Rydberg atom.
The features in the new scheme are of special interest for the implementation of quantum optimization and error correction algorithms.
arXiv Detail & Related papers (2021-11-02T13:17:10Z) - Realizing distance-selective interactions in a Rydberg-dressed atom
array [0.0]
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits.
Rydberg states are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states.
Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs.
arXiv Detail & Related papers (2021-10-19T17:39:48Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.