論文の概要: EI-Drive: A Platform for Cooperative Perception with Realistic Communication Models
- arxiv url: http://arxiv.org/abs/2412.09782v1
- Date: Fri, 13 Dec 2024 01:37:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:37.398561
- Title: EI-Drive: A Platform for Cooperative Perception with Realistic Communication Models
- Title(参考訳): EI-Drive: 現実的なコミュニケーションモデルを用いた協調認識プラットフォーム
- Authors: Hanchu Zhou, Edward Xie, Wei Shao, Dechen Gao, Michelle Dong, Junshan Zhang,
- Abstract要約: EI-DriveはエッジAIベースの自動運転シミュレーションプラットフォームである。
高度な協調認識とより現実的なコミュニケーションモデルを統合する。
EI-Driveを用いた実験では、車両の安全性と性能が大幅に向上した。
- 参考スコア(独自算出の注目度): 16.023748778830562
- License:
- Abstract: The growing interest in autonomous driving calls for realistic simulation platforms capable of accurately simulating cooperative perception process in realistic traffic scenarios. Existing studies for cooperative perception often have not accounted for transmission latency and errors in real-world environments. To address this gap, we introduce EI-Drive, an edge-AI based autonomous driving simulation platform that integrates advanced cooperative perception with more realistic communication models. Built on the CARLA framework, EI-Drive features new modules for cooperative perception while taking into account transmission latency and errors, providing a more realistic platform for evaluating cooperative perception algorithms. In particular, the platform enables vehicles to fuse data from multiple sources, improving situational awareness and safety in complex environments. With its modular design, EI-Drive allows for detailed exploration of sensing, perception, planning, and control in various cooperative driving scenarios. Experiments using EI-Drive demonstrate significant improvements in vehicle safety and performance, particularly in scenarios with complex traffic flow and network conditions. All code and documents are accessible on our GitHub page: \url{https://ucd-dare.github.io/eidrive.github.io/}.
- Abstract(参考訳): 自律運転への関心が高まり、現実的な交通シナリオにおける協調認識プロセスを正確にシミュレートできる現実的なシミュレーションプラットフォームが求められている。
協調知覚に関する既存の研究は、現実世界の環境における伝達遅延やエラーを考慮していないことが多い。
このギャップに対処するため、エッジAIベースの自動運転シミュレーションプラットフォームであるEI-Driveを導入し、高度な協調認識とより現実的なコミュニケーションモデルを統合する。
CARLAフレームワーク上に構築されたEI-Driveは、送信遅延とエラーを考慮して協調知覚のための新しいモジュールを備えており、協調認識アルゴリズムを評価するためのより現実的なプラットフォームを提供する。
特にこのプラットフォームでは、複数のソースからデータを取り出すことができ、複雑な環境における状況認識と安全性を向上させることができる。
モジュラー設計により、EI-Driveは様々な協調運転シナリオにおける知覚、知覚、計画、制御の詳細な探索を可能にする。
EI-Driveを用いた実験は、特に複雑な交通の流れやネットワーク条件のシナリオにおいて、車両の安全性と性能を著しく改善した。
すべてのコードとドキュメントはGitHubのページからアクセスできます。
関連論文リスト
- Transfer Your Perspective: Controllable 3D Generation from Any Viewpoint in a Driving Scene [56.73568220959019]
共同自動運転(CAV)は有望な方向のようだが、開発のためのデータ収集は簡単ではない。
本研究では,運転シーンにおける異なる視点から現実的な知覚を生み出すことを目的とした,救助支援のための新しいサロゲートを提案する。
シミュレーションされたコラボレーティブデータと実車データを組み合わせた,最初のソリューションを提案する。
論文 参考訳(メタデータ) (2025-02-10T17:07:53Z) - WHALES: A Multi-agent Scheduling Dataset for Enhanced Cooperation in Autonomous Driving [54.365702251769456]
我々は、駆動シーケンス当たり平均8.4エージェントのデータセットを提示する。
自律運転データセットの中で最大のエージェントと視点を提供するだけでなく、WHALESはエージェントの振る舞いを記録する。
エージェントスケジューリングタスクにおいて,エゴエージェントが複数の候補エージェントの1つを選択して協調する実験を行う。
論文 参考訳(メタデータ) (2024-11-20T14:12:34Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - Learning Driver Models for Automated Vehicles via Knowledge Sharing and
Personalization [2.07180164747172]
本稿では,自動車間の知識共有とパーソナライゼーションを通じて,自動走行車(AV)ドライバモデルを学習するためのフレームワークについて述べる。
インテリジェントな輸送システム、交通管理、車両間通信など、輸送工学にまたがるいくつかの応用を見出している。
論文 参考訳(メタデータ) (2023-08-31T17:18:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - DeepIPC: Deeply Integrated Perception and Control for an Autonomous Vehicle in Real Environments [7.642646077340124]
本稿では,自動運転に適した新しいエンドツーエンドモデルであるDeepIPCを紹介する。
DeepIPCは知覚と制御タスクをシームレスに統合する。
本評価は,DeepIPCの乾燥性およびマルチタスク効率において優れた性能を示すものである。
論文 参考訳(メタデータ) (2022-07-20T14:20:35Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Cyber Mobility Mirror for Enabling Cooperative Driving Automation: A
Co-Simulation Platform [16.542137414609606]
共シミュレーションプラットフォームは、高忠実度センサー認識システムとリアルタイム3D再構成システムによるサイバーワールドの両方で、現実世界をシミュレートすることができる。
ミラーワールドシミュレーターは知覚情報から3Dオブジェクトとその軌跡を再構築する役割を担っている。
道路沿いのLiDARを用いたリアルタイム車両検出・3次元再構築システムの研究事例を試作した。
論文 参考訳(メタデータ) (2022-01-24T05:27:20Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。