論文の概要: RP-SLAM: Real-time Photorealistic SLAM with Efficient 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2412.09868v1
- Date: Fri, 13 Dec 2024 05:27:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:36.900945
- Title: RP-SLAM: Real-time Photorealistic SLAM with Efficient 3D Gaussian Splatting
- Title(参考訳): RP-SLAM:高効率3次元ガウススプラッティングによるリアルタイム光現実性SLAM
- Authors: Lizhi Bai, Chunqi Tian, Jun Yang, Siyu Zhang, Masanori Suganuma, Takayuki Okatani,
- Abstract要約: RP-SLAM(RP-SLAM)は、単眼およびRGB-Dカメラのための3Dガウススプラッティングに基づく視覚SLAM法である。
リアルタイム性能とモデルコンパクト性を確保しつつ、最先端の地図レンダリング精度を実現する。
- 参考スコア(独自算出の注目度): 22.76955981251234
- License:
- Abstract: 3D Gaussian Splatting has emerged as a promising technique for high-quality 3D rendering, leading to increasing interest in integrating 3DGS into realism SLAM systems. However, existing methods face challenges such as Gaussian primitives redundancy, forgetting problem during continuous optimization, and difficulty in initializing primitives in monocular case due to lack of depth information. In order to achieve efficient and photorealistic mapping, we propose RP-SLAM, a 3D Gaussian splatting-based vision SLAM method for monocular and RGB-D cameras. RP-SLAM decouples camera poses estimation from Gaussian primitives optimization and consists of three key components. Firstly, we propose an efficient incremental mapping approach to achieve a compact and accurate representation of the scene through adaptive sampling and Gaussian primitives filtering. Secondly, a dynamic window optimization method is proposed to mitigate the forgetting problem and improve map consistency. Finally, for the monocular case, a monocular keyframe initialization method based on sparse point cloud is proposed to improve the initialization accuracy of Gaussian primitives, which provides a geometric basis for subsequent optimization. The results of numerous experiments demonstrate that RP-SLAM achieves state-of-the-art map rendering accuracy while ensuring real-time performance and model compactness.
- Abstract(参考訳): 3D Gaussian Splattingは高品質な3Dレンダリングのための有望な技術として登場し、3DGSを現実主義SLAMシステムに統合することへの関心が高まっている。
しかし、既存の手法では、ガウス的プリミティブの冗長性、連続最適化時の問題を忘れること、深度情報の欠如による単分子の場合のプリミティブの初期化の難しさといった課題に直面している。
高速かつ光リアルなマッピングを実現するため,単眼およびRGB-Dカメラのための3次元ガウススプラッティングに基づく視覚SLAM法RP-SLAMを提案する。
RP-SLAMデカップリングカメラはガウスのプリミティブ最適化から推定され、3つのキーコンポーネントから構成される。
まず,適応的サンプリングとガウス的プリミティブフィルタリングにより,シーンのコンパクトかつ正確な表現を実現するための効率的なインクリメンタルマッピング手法を提案する。
次に, ウィンドウの動的最適化手法を提案し, 問題を緩和し, マップの整合性を改善する。
最後に、単分子の場合、スパース点雲に基づく単分子鍵フレーム初期化法を提案し、ガウス原始体の初期化精度を改善し、その後の最適化の幾何学的基礎を提供する。
多くの実験の結果、RP-SLAMはリアルタイム性能とモデルコンパクト性を確保しつつ、最先端の地図レンダリング精度を実現することが示されている。
関連論文リスト
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
3Dガウシアンによって表現される放射場は、高いトレーニング効率と高速レンダリングの両方を提供する、新しいビューの合成に優れている。
既存の手法では、高密度推定ネットワークからの奥行き先を組み込むことが多いが、入力画像に固有の多視点一貫性を見落としている。
本稿では,3次元ガウス・スプレイティング(MCGS)に基づくビュー・フレームワークを提案し,スパークス・インプット・ビューからシーンを再構築する。
論文 参考訳(メタデータ) (2024-10-15T08:39:05Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splattingは、RGBのみの高密度SLAMの幾何学と外観の強力な表現として登場した。
本稿では,高密度な3次元ガウス写像表現を持つRGBのみのSLAMシステムを提案する。
Replica、TUM-RGBD、ScanNetのデータセットに対する実験は、グローバルに最適化された3Dガウスの有効性を示している。
論文 参考訳(メタデータ) (2024-05-26T12:26:54Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field [46.8198987091734]
本稿では,新しい不確実性を考慮した3次元ガウス場に基づく高密度RGB-D SLAMシステム,すなわちCG-SLAMを提案する。
各種データセットの実験により、CG-SLAMは、最大15Hzの追従速度で優れた追従性能とマッピング性能を達成することが示された。
論文 参考訳(メタデータ) (2024-03-24T11:19:59Z) - Compact 3D Gaussian Splatting For Dense Visual SLAM [32.37035997240123]
本稿では,ガウス楕円体の数とパラメータサイズを削減できるコンパクトな3次元ガウス格子SLAMシステムを提案する。
余剰楕円体を減らすために、スライドウィンドウベースのマスキング戦略が最初に提案されている。
本手法は,シーン表現の最先端(SOTA)品質を維持しつつ,高速なトレーニングとレンダリングの高速化を実現する。
論文 参考訳(メタデータ) (2024-03-17T15:41:35Z) - Gaussian Splatting SLAM [16.3858380078553]
単分子SLAMにおける3次元ガウス散乱の最初の応用について述べる。
我々の方法は3fpsで動作し、正確な追跡、マッピング、高品質なレンダリングに必要な表現を統一する。
ライブカメラから高忠実度で連続的に3Dシーンを再構築するためには、いくつかの革新が必要である。
論文 参考訳(メタデータ) (2023-12-11T18:19:04Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。