Ultrastrong photon superbunching from electron shelving and time integral
- URL: http://arxiv.org/abs/2412.09873v1
- Date: Fri, 13 Dec 2024 05:35:57 GMT
- Title: Ultrastrong photon superbunching from electron shelving and time integral
- Authors: He-bin Zhang, Yuanjiang Tang, Yong-Chun Liu,
- Abstract summary: We propose a universally applicable mechanism that can generate the superbunching light with ultrastrong second-order and higher-order correlations hitherto unreachable.
Both the research and technological applications on strong correlations can be extensively facilitated due to this readily accessible and manipulated mechanism for generating photon correlation.
- Score: 0.29260385019352086
- License:
- Abstract: Photon correlation is at the heart of quantum optics and has important applications in quantum technologies. Here we propose a universally applicable mechanism that can generate the superbunching light with ultrastrong second-order and higher-order correlations hitherto unreachable. This mechanism arises from the combined effect of electron shelving and time integral of fluorescence based on a cascaded quantum system comprising an emitter and a filter or a cavity QED system, and has high experimental feasibility according to current experimental techniques. Besides, both the correlation degrees and the frequency of the light can be flexibly varied over broad ranges. Both the research and technological applications on strong correlations can be extensively facilitated due to this readily accessible and manipulated mechanism for generating photon correlation.
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Squeezed Light via Exciton-Phonon Cavity QED [4.561414434532408]
We introduce a new mechanism and system to produce squeezed light using an exciton-phonon cavity-QED system.
We show that the strong exciton-phonon nonlinear interaction can induce a quadrature-squeezed cavity output field.
arXiv Detail & Related papers (2024-08-18T01:27:23Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot [0.03829341169189996]
We develop a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator.
The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4).
The actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with corrected fidelities to a maximally entangled state up to 0.96(1).
arXiv Detail & Related papers (2022-12-23T18:06:32Z) - High harmonic generation driven by quantum light [0.0]
High harmonic generation (HHG) is an extreme nonlinear process where intense pulses of light drive matter to emit high harmonics of the driving frequency.
We show that the defining spectral characteristics of HG, such as the plateau and cutoff, are sensitive to the photon statistics of the driving light.
We develop the theory of extreme nonlinear optics driven by squeezed light, and more generally by arbitrary quantum states of light.
arXiv Detail & Related papers (2022-11-06T17:44:30Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Many-body cavity quantum electrodynamics with driven inhomogeneous
emitters [2.745127037087037]
We study how a large, inhomogeneously broadened ensemble of solid-state emitters coupled with high cooperativity to a nanophotonic resonator behaves under strong excitation.
We discover a sharp, collectively induced transparency (CIT) in the cavity reflection spectrum, resulting from quantum interference and collective response induced by the interplay between driven inhomogeneous emitters and cavity photons.
These phenomena in the many-body cQED regime enable new mechanisms for achieving slow light and frequency referencing, pave a way towards solid-state superradiant lasers and inform the development of ensemble-based quantum interconnects.
arXiv Detail & Related papers (2022-08-08T18:06:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.