Ultrastrong light-matter interaction in a multimode photonic crystal
- URL: http://arxiv.org/abs/2209.14972v2
- Date: Wed, 21 Feb 2024 20:51:41 GMT
- Title: Ultrastrong light-matter interaction in a multimode photonic crystal
- Authors: Andrei Vrajitoarea, Ron Belyansky, Rex Lundgren, Seth Whitsitt, Alexey
V. Gorshkov, Andrew A. Houck
- Abstract summary: We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
- Score: 0.1588748438612071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Harnessing the interaction between light and matter at the quantum level has
been a central theme in atomic physics and quantum optics, with applications
from quantum computation to quantum metrology. Combining complex interactions
with photonic synthetic materials provides an opportunity to investigate novel
quantum phases and phenomena, establishing interesting connections to condensed
matter physics. Here we explore many-body phenomena with a single artificial
atom coupled to the many discrete modes of a photonic crystal. This experiment
reaches the ultrastrong light-matter coupling regime using the circuit quantum
electrodynamics paradigm, by galvanically coupling a highly nonlinear fluxonium
qubit to a tight-binding lattice of microwave resonators. In this regime, the
transport of a single photon becomes a many-body problem, owing to the strong
participation of multi-photon bound states arising from interactions that break
particle number conservation. Exploiting the effective photon-photon
interactions mediated by the qubit, the transport of multiple photons leads to
complex multimode dynamics that can be employed for generating a continuous
reservoir of strongly-correlated photons, an important resource for quantum
networks. This work opens exciting prospects for exploring nonlinear quantum
optics at the single-photon level and stabilizing entangled many-body phases of
light.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Generating optical cat states via quantum interference of multi-path
free-electron-photons interactions [0.0]
We propose a scheme to generate optical cat states based on the quantum interference of multi-path free-electron-photons interactions.
We show that the Wigner negativity oscillates with the coupling strength, and the optical cat states are successfully generated with high fidelity.
arXiv Detail & Related papers (2023-06-22T15:17:48Z) - Deterministic generation of arbitrary n-photon states in an integrated
photonic system [0.0]
We propose a chip-integrable scheme to generate a group of n photons with very high fidelity based on the long-range collective interaction between the emitters mediated by the waveguide modes.
Our results can find important applications in the areas such as photonic-chip-based quantum information processing and quantum metrology.
arXiv Detail & Related papers (2023-05-17T01:24:11Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Few-photon transport via a multimode nonlinear cavity: theory and
applications [0.0]
We study few-photon transport via a waveguide-coupled multimode optical cavity with second-order bulk nonlinearity.
Our results might lead to significant applications of quantum photonic circuits in all-optical quantum information processing and quantum network protocols.
arXiv Detail & Related papers (2022-09-08T15:28:05Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum interface between light and a one-dimensional atomic system [58.720142291102135]
We investigate optimal conditions for the quantum interface between a signal photon pulse and one-dimensional chain consisting of a varied number of atoms.
The efficiency of interaction is mainly limited by achieved overlap and coupling of the waveguide evanescent field with the trapped atoms.
arXiv Detail & Related papers (2020-04-11T11:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.