論文の概要: Analyzing Fairness of Computer Vision and Natural Language Processing Models
- arxiv url: http://arxiv.org/abs/2412.09900v3
- Date: Wed, 23 Jul 2025 21:24:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:40.82365
- Title: Analyzing Fairness of Computer Vision and Natural Language Processing Models
- Title(参考訳): コンピュータビジョンの公正性と自然言語処理モデルの解析
- Authors: Ahmed Rashed, Abdelkrim Kallich, Mohamed Eltayeb,
- Abstract要約: 本研究は,Microsoft による Fairlearn と IBM による AIF360 の2つのフェアネスライブラリを利用する。
この研究は、コンピュータビジョン(CV)と自然言語処理(NLP)モデルを用いて、非構造化データセットに対するバイアスの評価と緩和に焦点を当てている。
その結果, モデルの性能を維持しつつ, バイアスを効果的に低減し, 緩和アルゴリズムの性能向上を図っている。
- 参考スコア(独自算出の注目度): 1.0923877073891446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) algorithms play a critical role in decision-making across various domains, such as healthcare, finance, education, and law enforcement. However, concerns about fairness and bias in these systems have raised significant ethical and social challenges. To address these challenges, this research utilizes two prominent fairness libraries, Fairlearn by Microsoft and AIF360 by IBM. These libraries offer comprehensive frameworks for fairness analysis, providing tools to evaluate fairness metrics, visualize results, and implement bias mitigation algorithms. The study focuses on assessing and mitigating biases for unstructured datasets using Computer Vision (CV) and Natural Language Processing (NLP) models. The primary objective is to present a comparative analysis of the performance of mitigation algorithms from the two fairness libraries. This analysis involves applying the algorithms individually, one at a time, in one of the stages of the ML lifecycle, pre-processing, in-processing, or post-processing, as well as sequentially across more than one stage. The results reveal that some sequential applications improve the performance of mitigation algorithms by effectively reducing bias while maintaining the model's performance. Publicly available datasets from Kaggle were chosen for this research, providing a practical context for evaluating fairness in real-world machine learning workflows.
- Abstract(参考訳): 機械学習(ML)アルゴリズムは、医療、金融、教育、法執行など、さまざまな領域における意思決定において重要な役割を果たす。
しかしながら、これらのシステムにおける公平性とバイアスに関する懸念は、重大な倫理的・社会的課題を引き起こしている。
これらの課題に対処するために、本研究では、MicrosoftのFairlearnとIBMのAIF360という2つの顕著なフェアネスライブラリを利用している。
これらのライブラリは、公正度分析のための包括的なフレームワークを提供し、公正度メトリクスを評価し、結果を視覚化し、バイアス軽減アルゴリズムを実装するツールを提供する。
この研究は、コンピュータビジョン(CV)と自然言語処理(NLP)モデルを用いて、非構造化データセットに対するバイアスの評価と緩和に焦点を当てている。
主な目的は,2つのフェアネスライブラリの緩和アルゴリズムの性能の比較分析を行うことである。
この分析では、アルゴリズムをMLライフサイクルの1つのステージ、前処理、内処理、後処理、および複数のステージで順次適用する。
その結果, モデルの性能を維持しつつ, バイアスを効果的に低減し, 緩和アルゴリズムの性能を向上するアプリケーションが存在することが明らかとなった。
Kaggleの公開データセットがこの研究に選ばれ、現実世界の機械学習ワークフローの公平性を評価するための実践的なコンテキストを提供する。
関連論文リスト
- Systematic Evaluation of Optimization Techniques for Long-Context Language Models [15.377591633726396]
大規模言語モデル(LLM)は、さまざまな自然言語処理タスクにまたがるが、リソース要求と限られたコンテキストウインドウに対処する。
本稿では、これらの最適化を体系的にベンチマークし、メモリ使用量、レイテンシ、スループットを特徴付けるとともに、これらの手法がテキスト生成の品質に与える影響について検討する。
論文 参考訳(メタデータ) (2025-08-01T04:17:24Z) - Contextual Fairness-Aware Practices in ML: A Cost-Effective Empirical Evaluation [48.943054662940916]
フェアネス・アウェアの実践を文脈的・費用対効果という2つの観点から検討する。
本研究は,文脈が公正な実践の有効性にどのように影響するかを考察する。
本研究の目的は,SE実践者に対して,最小パフォーマンスコストで公正性を実現するプラクティスの選択を指導することである。
論文 参考訳(メタデータ) (2025-03-19T18:10:21Z) - Analyzing Fairness of Classification Machine Learning Model with Structured Dataset [1.0923877073891446]
本研究では,分類タスクにおける構造化データセットに適用された機械学習モデルの公平性について検討する。
3つのフェアネスライブラリ、MicrosoftのFairlearn、IBMのAIF360、GoogleのWhat If Toolが採用されている。
この研究は、MLモデルのバイアスの程度を評価し、これらのライブラリの有効性を比較し、実践者に対して実行可能な洞察を導出することを目的としている。
論文 参考訳(メタデータ) (2024-12-13T06:31:09Z) - Optimisation Strategies for Ensuring Fairness in Machine Learning: With and Without Demographics [4.662958544712181]
本稿では,機械学習フェアネスにおけるオープンな問題に対処するための2つの形式的枠組みを紹介する。
あるフレームワークでは、オペレータ値の最適化とmin-maxの目的が時系列問題の不正性に対処するために使用される。
第2のフレームワークでは、一般的に使用されるデータセットにおいて、性別や人種などのセンシティブな属性を欠くという課題に対処する。
論文 参考訳(メタデータ) (2024-11-13T22:29:23Z) - FAIREDU: A Multiple Regression-Based Method for Enhancing Fairness in Machine Learning Models for Educational Applications [1.24497353837144]
本稿では,複数機能にまたがる公平性向上を目的とした,新規かつ効果的な手法であるFAIREDUを紹介する。
モデル性能を損なうことなく公平性を向上するためのFAIREDUの有効性を評価する。
その結果, FAIREDUは, 性別, 人種, 年齢, その他の繊細な特徴の交叉性に対処し, モデル精度に最小限の影響を伴って, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-08T23:29:24Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
本稿では,10の代表的な公正性を考慮したグラフ学習手法に関する広範なベンチマークを示す。
我々の詳細な分析は、既存の手法の強みと限界に関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-07-16T18:43:43Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
本稿では,アルゴリズム決定の公平性を測り,解釈し,改善するためのMIIFフレームワークを提案する。
ランダム化実験を用いてアルゴリズムバイアスを測定し, 異なる処理, 異なる影響, 経済的価値の同時測定を可能にする。
また、ブラックボックスアルゴリズムの信念を正確に解釈し、蒸留する、説明可能な機械学習モデルを開発した。
論文 参考訳(メタデータ) (2023-09-04T19:45:18Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - Towards Fair and Explainable AI using a Human-Centered AI Approach [5.888646114353372]
分類システムと単語埋め込みにおける説明可能性と公平性の向上を目的とした5つの研究プロジェクトについて述べる。
最初のプロジェクトは、ローカルモデル説明を機械教師のインタフェースとして導入するユーティリティ/ダウンサイドについて検討する。
第二のプロジェクトは、因果性に基づくヒューマン・イン・ザ・ループ視覚ツールであるD-BIASを紹介し、データセットの社会的バイアスを特定し緩和する。
第3のプロジェクトは、グループに対するバイアスに対するトレーニング済みの静的単語埋め込みの監査を支援する、ビジュアルインタラクティブツールであるWordBiasを提示する。
4番目のプロジェクトは、ソーシャルを識別するビジュアル分析ツールDramatVis Personae
論文 参考訳(メタデータ) (2023-06-12T21:08:55Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - A survey on datasets for fairness-aware machine learning [6.962333053044713]
多くのフェアネス対応機械学習ソリューションが提案されている。
本稿では,フェアネスを意識した機械学習に使用される実世界のデータセットについて概説する。
データセットのバイアスと公平性についてより深く理解するために、探索分析を用いて興味深い関係を考察する。
論文 参考訳(メタデータ) (2021-10-01T16:54:04Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
公平なHIN表現学習のための包括的非バイアス化手法を提案する。
これらのアルゴリズムの挙動,特にフェアネスと予測精度のトレードオフをバランスさせる能力について検討した。
キャリアカウンセリングの自動化アプリケーションにおいて,提案手法の性能を評価する。
論文 参考訳(メタデータ) (2021-04-18T08:28:18Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。