Subsystem Thermalization Hypothesis in Quantum Spin Chains with Conserved Charges
- URL: http://arxiv.org/abs/2412.09905v1
- Date: Fri, 13 Dec 2024 06:45:07 GMT
- Title: Subsystem Thermalization Hypothesis in Quantum Spin Chains with Conserved Charges
- Authors: Feng-Li Lin, Jhh-Jing Hong, Ching-Yu Huang,
- Abstract summary: We consider the thermalization hypothesis of pure states in quantum Ising chain with $Z$ symmetry, XXZ chain with $U(1)$ symmetry, and XXX chain with $SU(2)$ symmetries.
- Score: 0.020482269513546456
- License:
- Abstract: We consider the thermalization hypothesis of pure states in quantum Ising chain with $Z_2$ symmetry, XXZ chain with $U(1)$ symmetry, and XXX chain with $SU(2)$ symmetries. Two kinds of pure states are considered: the energy eigenstates and the typical states evolved unitarily from the random product states for a long enough period. We further group the typical states by their expectation values of the conserved charges and consider the fine-grained thermalization hypothesis. We compare the locally (subsystem) reduced states of typical states/eigenstates with the ones of the corresponding thermal ensemble states. Besides the usual thermal ensembles such as the (micro-)canonical ensemble without conserved charges and the generalized Gibbs ensemble (GGE) with all conserved charges included, we also consider the so-called partial-GGEs (p-GGEs), which include only part of the conserved charges in the thermal ensemble. Moreover, in the framework of p-GGE, the Hamiltonian and other conserved charges are on an equal footing. The introduction of p-GGEs extends quantum thermalization to a more general scope. The validity of the subsystem thermalization hypothesis can be quantified by the smallness of the relative entropy of the reduced states obtained from the GGE/p-GGE and the typical states/eigenstates. We examine the validity of the thermalization hypothesis by numerically studying the relative entropy demographics. We show that the thermalization hypothesis holds generically for the small enough subsystems for various p-GGEs. Thus, our framework extends the universality of quantum thermalization.
Related papers
- Thermalization in Trapped Bosonic Systems With Disorder [3.1457219084519004]
We study experimentally accessible states in a system of bosonic atoms trapped in an open linear chain with disorder.
We find that, within certain tolerances, most states in the chaotic region thermalize.
However, states with low participation ratios in the energy eigenstate basis show greater deviations from thermal equilibrium values.
arXiv Detail & Related papers (2024-07-05T19:00:02Z) - Generic ETH: Eigenstate Thermalization beyond the Microcanonical [0.0]
Eigenstate Thermalization Hypothesis (ETH) has played a key role in recent advances in high energy and condensed matter communities.
We design a qutrit lattice system with conserved quasilocal charge, in which we verify a form of generalized eigenstate thermalization.
We also observe prototypical signatures of thermalization in states well outside microcanonical windows of both charge and energy, which we dub generic ETH'
arXiv Detail & Related papers (2024-03-08T10:19:04Z) - Robust non-ergodicity of ground state in the $\beta$ ensemble [0.0]
We study the localization properties of the ground and anti-ground states of the $beta$ ensemble.
Both analytically and numerically, we show that both the edge states demonstrate non-ergodic (fractal) properties for $betasimmathcalO(1)$.
Surprisingly, the fractal dimension of the edge states remain three time smaller than that of the bulk states irrespective of the global phase of the $beta$ ensemble.
arXiv Detail & Related papers (2023-11-16T19:12:00Z) - Generalized Deep Thermalization for Free Fermions [0.0]
In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax to non-thermal stationary states.
In the standard framework, information on the rest of the system is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE)
Here we show that the latter also completely characterize a recently introduced projected ensemble (PE), constructed by performing projective measurements on the rest of the system.
arXiv Detail & Related papers (2022-07-27T16:43:19Z) - Non-Abelian eigenstate thermalization hypothesis [58.720142291102135]
The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries.
We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics.
arXiv Detail & Related papers (2022-06-10T18:14:18Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Universal Thermal Corrections to Symmetry-Resolved Entanglement Entropy
and Full Counting Statistics [0.0]
We consider two-dimensional conformal field theories on a circle at nonzero temperature.
We calculate the leading corrections to the contributions of individual charge sectors in a low-temperature expansion.
We explicitly evaluate the thermal corrections to the symmetry-resolved entanglement entropy and FCS for the spinless fermions.
arXiv Detail & Related papers (2022-03-13T16:59:42Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.