SplineGS: Robust Motion-Adaptive Spline for Real-Time Dynamic 3D Gaussians from Monocular Video
- URL: http://arxiv.org/abs/2412.09982v2
- Date: Wed, 18 Dec 2024 03:25:50 GMT
- Title: SplineGS: Robust Motion-Adaptive Spline for Real-Time Dynamic 3D Gaussians from Monocular Video
- Authors: Jongmin Park, Minh-Quan Viet Bui, Juan Luis Gonzalez Bello, Jaeho Moon, Jihyong Oh, Munchurl Kim,
- Abstract summary: We propose SplineGS, a COLMAP-free dynamic 3D Gaussian Splatting framework for high-quality reconstruction and fast rendering from monocular videos.
At its core is a novel Motion-Adaptive Spline (MAS) method, which represents continuous dynamic 3D Gaussian trajectories.
We present a joint optimization strategy for camera parameter estimation and 3D Gaussian attributes, leveraging photometric and geometric consistency.
- Score: 26.468480933928458
- License:
- Abstract: Synthesizing novel views from in-the-wild monocular videos is challenging due to scene dynamics and the lack of multi-view cues. To address this, we propose SplineGS, a COLMAP-free dynamic 3D Gaussian Splatting (3DGS) framework for high-quality reconstruction and fast rendering from monocular videos. At its core is a novel Motion-Adaptive Spline (MAS) method, which represents continuous dynamic 3D Gaussian trajectories using cubic Hermite splines with a small number of control points. For MAS, we introduce a Motion-Adaptive Control points Pruning (MACP) method to model the deformation of each dynamic 3D Gaussian across varying motions, progressively pruning control points while maintaining dynamic modeling integrity. Additionally, we present a joint optimization strategy for camera parameter estimation and 3D Gaussian attributes, leveraging photometric and geometric consistency. This eliminates the need for Structure-from-Motion preprocessing and enhances SplineGS's robustness in real-world conditions. Experiments show that SplineGS significantly outperforms state-of-the-art methods in novel view synthesis quality for dynamic scenes from monocular videos, achieving thousands times faster rendering speed.
Related papers
- Seeing World Dynamics in a Nutshell [132.79736435144403]
NutWorld is a framework that transforms monocular videos into dynamic 3D representations in a single forward pass.
We demonstrate that NutWorld achieves high-fidelity video reconstruction quality while enabling downstream applications in real-time.
arXiv Detail & Related papers (2025-02-05T18:59:52Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics.
We propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections.
Our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
arXiv Detail & Related papers (2024-06-04T15:17:37Z) - MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo [54.00987996368157]
We present MVSGaussian, a new generalizable 3D Gaussian representation approach derived from Multi-View Stereo (MVS)
MVSGaussian achieves real-time rendering with better synthesis quality for each scene.
arXiv Detail & Related papers (2024-05-20T17:59:30Z) - SC4D: Sparse-Controlled Video-to-4D Generation and Motion Transfer [57.506654943449796]
We propose an efficient, sparse-controlled video-to-4D framework named SC4D that decouples motion and appearance.
Our method surpasses existing methods in both quality and efficiency.
We devise a novel application that seamlessly transfers motion onto a diverse array of 4D entities.
arXiv Detail & Related papers (2024-04-04T18:05:18Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - SWinGS: Sliding Windows for Dynamic 3D Gaussian Splatting [7.553079256251747]
We extend 3D Gaussian Splatting to reconstruct dynamic scenes.
We produce high-quality renderings of general dynamic scenes with competitive quantitative performance.
Our method can be viewed in real-time in our dynamic interactive viewer.
arXiv Detail & Related papers (2023-12-20T03:54:03Z) - Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle [9.082693946898733]
We introduce a novel point-based approach for fast dynamic scene reconstruction and real-time rendering from both multi-view and monocular videos.
In contrast to the prevalent NeRF-based approaches hampered by slow training and rendering speeds, our approach harnesses recent advancements in point-based 3D Gaussian Splatting (3DGS)
Our proposed approach showcases a substantial efficiency improvement, achieving a $5times$ faster training speed compared to the per-frame 3DGS modeling.
arXiv Detail & Related papers (2023-12-06T11:25:52Z) - SC-GS: Sparse-Controlled Gaussian Splatting for Editable Dynamic Scenes [59.23385953161328]
Novel view synthesis for dynamic scenes is still a challenging problem in computer vision and graphics.
We propose a new representation that explicitly decomposes the motion and appearance of dynamic scenes into sparse control points and dense Gaussians.
Our method can enable user-controlled motion editing while retaining high-fidelity appearances.
arXiv Detail & Related papers (2023-12-04T11:57:14Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.