Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle
- URL: http://arxiv.org/abs/2312.03431v1
- Date: Wed, 6 Dec 2023 11:25:52 GMT
- Title: Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle
- Authors: Youtian Lin, Zuozhuo Dai, Siyu Zhu, Yao Yao
- Abstract summary: We introduce a novel point-based approach for fast dynamic scene reconstruction and real-time rendering from both multi-view and monocular videos.
In contrast to the prevalent NeRF-based approaches hampered by slow training and rendering speeds, our approach harnesses recent advancements in point-based 3D Gaussian Splatting (3DGS)
Our proposed approach showcases a substantial efficiency improvement, achieving a $5times$ faster training speed compared to the per-frame 3DGS modeling.
- Score: 9.082693946898733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Gaussian-Flow, a novel point-based approach for fast dynamic
scene reconstruction and real-time rendering from both multi-view and monocular
videos. In contrast to the prevalent NeRF-based approaches hampered by slow
training and rendering speeds, our approach harnesses recent advancements in
point-based 3D Gaussian Splatting (3DGS). Specifically, a novel Dual-Domain
Deformation Model (DDDM) is proposed to explicitly model attribute deformations
of each Gaussian point, where the time-dependent residual of each attribute is
captured by a polynomial fitting in the time domain, and a Fourier series
fitting in the frequency domain. The proposed DDDM is capable of modeling
complex scene deformations across long video footage, eliminating the need for
training separate 3DGS for each frame or introducing an additional implicit
neural field to model 3D dynamics. Moreover, the explicit deformation modeling
for discretized Gaussian points ensures ultra-fast training and rendering of a
4D scene, which is comparable to the original 3DGS designed for static 3D
reconstruction. Our proposed approach showcases a substantial efficiency
improvement, achieving a $5\times$ faster training speed compared to the
per-frame 3DGS modeling. In addition, quantitative results demonstrate that the
proposed Gaussian-Flow significantly outperforms previous leading methods in
novel view rendering quality. Project page:
https://nju-3dv.github.io/projects/Gaussian-Flow
Related papers
- PointGS: Point Attention-Aware Sparse View Synthesis with Gaussian Splatting [4.451779041553596]
3D Gaussian splatting (3DGS) is an innovative rendering technique that surpasses the neural radiance field (NeRF) in both rendering speed and visual quality.<n>We propose a Point-wise Feature-Aware Gaussian Splatting framework that enables real-time, high-quality rendering from sparse training views.
arXiv Detail & Related papers (2025-06-12T04:07:07Z) - Speedy Deformable 3D Gaussian Splatting: Fast Rendering and Compression of Dynamic Scenes [57.69608119350651]
Recent extensions of 3D Gaussian Splatting (3DGS) to dynamic scenes achieve high-quality novel view synthesis by using neural networks to predict the time-varying deformation of each Gaussian.<n>However, performing per-Gaussian neural inference at every frame poses a significant bottleneck, limiting rendering speed and increasing memory and compute requirements.<n>We present Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), a general pipeline for accelerating the rendering speed of dynamic 3DGS and 4DGS representations by reducing neural inference through two complementary techniques.
arXiv Detail & Related papers (2025-06-09T16:30:48Z) - FlexGS: Train Once, Deploy Everywhere with Many-in-One Flexible 3D Gaussian Splatting [57.97160965244424]
3D Gaussian splatting (3DGS) has enabled various applications in 3D scene representation and novel view synthesis.<n>Previous approaches have focused on pruning less important Gaussians, effectively compressing 3DGS.<n>We present an elastic inference method for 3DGS, achieving substantial rendering performance without additional fine-tuning.
arXiv Detail & Related papers (2025-06-04T17:17:57Z) - 3DGEER: Exact and Efficient Volumetric Rendering with 3D Gaussians [15.776720879897345]
We introduce 3DGEER, an Exact and Efficient Volumetric Gaussian Rendering method.<n>Our method consistently outperforms prior methods, establishing a new state-of-the-art in real-time neural rendering.
arXiv Detail & Related papers (2025-05-29T22:52:51Z) - Hybrid 3D-4D Gaussian Splatting for Fast Dynamic Scene Representation [2.7463268699570134]
4D Gaussian Splatting (4DGS) has emerged as an appealing approach due to its ability to model high-fidelity spatial and temporal variations.<n>We introduce hybrid 3D-4D Gaussian Splatting (3D-4DGS), a novel framework that adaptively represents static regions with 3D Gaussians while reserving 4D Gaussians for dynamic elements.<n>Our method achieves significantly faster training times compared to baseline 4D Gaussian Splatting methods while maintaining or improving the visual quality.
arXiv Detail & Related papers (2025-05-19T14:59:58Z) - Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering [12.27734287104036]
Novel-entangleview synthesis (NVS) for dynamic scenes from 2D images presents significant challenges.
We introduce Disentangled 4D Gaussianting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations.
Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352times1014$ on a 3090 GPU.
arXiv Detail & Related papers (2025-03-28T05:46:02Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.
We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - SplineGS: Robust Motion-Adaptive Spline for Real-Time Dynamic 3D Gaussians from Monocular Video [26.468480933928458]
We propose SplineGS, a COLMAP-free dynamic 3D Gaussian Splatting framework for high-quality reconstruction and fast rendering from monocular videos.
At its core is a novel Motion-Adaptive Spline (MAS) method, which represents continuous dynamic 3D Gaussian trajectories.
We present a joint optimization strategy for camera parameter estimation and 3D Gaussian attributes, leveraging photometric and geometric consistency.
arXiv Detail & Related papers (2024-12-13T09:09:14Z) - GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.<n>Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - S4D: Streaming 4D Real-World Reconstruction with Gaussians and 3D Control Points [30.46796069720543]
We introduce a novel approach for streaming 4D real-world reconstruction utilizing discrete 3D control points.
This method physically models local rays and establishes a motion-decoupling coordinate system.
By effectively merging traditional graphics with learnable pipelines, it provides a robust and efficient local 6-degrees-of-freedom (6 DoF) motion representation.
arXiv Detail & Related papers (2024-08-23T12:51:49Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
We present a unified framework integrating neural SDF with 3DGS.
This framework incorporates a learnable neural SDF field to guide the densification and pruning of Gaussians.
Our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-05-30T03:46:59Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - Recent Advances in 3D Gaussian Splatting [31.3820273122585]
3D Gaussian Splatting has greatly accelerated rendering speed of novel view synthesis.
The explicit representation of 3D Gaussian Splatting facilitates editing tasks like dynamic reconstruction, geometry editing, and physical simulation.
We present a literature review of recent 3D Gaussian Splatting methods, which can be roughly classified into 3D reconstruction, 3D editing, and other downstream applications.
arXiv Detail & Related papers (2024-03-17T07:57:08Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting [11.791944275269266]
We introduce the Gaussian Mesh Splatting (GaMeS) model, which allows modification of Gaussian components in a similar way as meshes.
We also define Gaussian splats solely based on their location on the mesh, allowing for automatic adjustments in position, scale, and rotation during animation.
arXiv Detail & Related papers (2024-02-02T14:50:23Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.