論文の概要: Static Pruning in Dense Retrieval using Matrix Decomposition
- arxiv url: http://arxiv.org/abs/2412.09983v1
- Date: Fri, 13 Dec 2024 09:09:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:25.181394
- Title: Static Pruning in Dense Retrieval using Matrix Decomposition
- Title(参考訳): マトリックス分解を用いた高密度検索における静的プルーニング
- Authors: Federico Siciliano, Francesca Pezzuti, Nicola Tonellotto, Fabrizio Silvestri,
- Abstract要約: 密集検索の時代には、文書のインデックス化と検索は主に、文書を埋め込みに変換するエンコーディングモデルに基づいている。
近年の研究では, 組込みサイズを減らし, 回収効率を向上できる可能性が示唆されている。
そこで本研究では,主成分分析による埋込み寸法の低減のための新しい静的プルーニング手法を提案する。
- 参考スコア(独自算出の注目度): 12.899105656025018
- License:
- Abstract: In the era of dense retrieval, document indexing and retrieval is largely based on encoding models that transform text documents into embeddings. The efficiency of retrieval is directly proportional to the number of documents and the size of the embeddings. Recent studies have shown that it is possible to reduce embedding size without sacrificing - and in some cases improving - the retrieval effectiveness. However, the methods introduced by these studies are query-dependent, so they can't be applied offline and require additional computations during query processing, thus negatively impacting the retrieval efficiency. In this paper, we present a novel static pruning method for reducing the dimensionality of embeddings using Principal Components Analysis. This approach is query-independent and can be executed offline, leading to a significant boost in dense retrieval efficiency with a negligible impact on the system effectiveness. Our experiments show that our proposed method reduces the dimensionality of document representations by over 50% with up to a 5% reduction in NDCG@10, for different dense retrieval models.
- Abstract(参考訳): 密集検索の時代には、文書のインデックス化と検索は主に、文書を埋め込みに変換するエンコーディングモデルに基づいている。
検索の効率は、文書の数と埋め込みのサイズに直接比例する。
近年の研究では, 組込みサイズを減らし, 回収効率を向上することが示唆されている。
しかし、これらの研究によって導入された手法はクエリ依存であるため、オフラインでは適用できず、クエリ処理中に追加の計算を必要とするため、検索効率に悪影響を及ぼす。
本稿では,主成分分析を用いた埋め込みの次元性を低減するための新しい静的プルーニング手法を提案する。
このアプローチはクエリ非依存であり、オフラインで実行できるため、密集した検索効率が大幅に向上し、システムの有効性には何の影響も与えない。
提案手法は, 文書表現の次元を50%以上削減し, NDCG@10を最大5%削減する。
関連論文リスト
- Is Semantic Chunking Worth the Computational Cost? [0.0]
本研究は,3つの共通検索タスクを用いた意味的チャンキングの有効性を体系的に評価する。
その結果,セマンティックチャンキングに伴う計算コストは,一貫した性能向上によって正当化されないことがわかった。
論文 参考訳(メタデータ) (2024-10-16T21:53:48Z) - DeeperImpact: Optimizing Sparse Learned Index Structures [4.92919246305126]
我々は、SPLADEの最も効果的なバージョンと有効性ギャップを狭めることに重点を置いている。
その結果,SPLADEの最も有効なバージョンとの有効性ギャップは著しく狭められた。
論文 参考訳(メタデータ) (2024-05-27T12:08:59Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - Optimizing Retrieval-augmented Reader Models via Token Elimination [30.53636918279251]
我々は,検索した全てのパスが読者モデルの性能に与える影響と必要性を分析した。
提案手法は,実行時間を最大62.2%削減でき,性能は2%しか低下せず,場合によっては性能も向上することを示した。
論文 参考訳(メタデータ) (2023-10-20T17:41:36Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
LADR (Lexically-Accelerated Dense Retrieval) は, 既存の高密度検索モデルの効率を向上する, 簡便な手法である。
LADRは、標準ベンチマークでの徹底的な検索と同等の精度とリコールの両方を一貫して達成する。
論文 参考訳(メタデータ) (2023-07-31T15:44:26Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
各種コーパス尺度における生成的検索手法の実証的研究を行った。
我々は8.8Mパスのコーパスで数百万のパスに生成検索をスケールし、モデルサイズを最大11Bパラメータまで評価する。
生成的検索は、小さなコーパス上の最先端のデュアルエンコーダと競合するが、数百万のパスへのスケーリングは依然として重要で未解決の課題である。
論文 参考訳(メタデータ) (2023-05-19T17:33:38Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
本稿では, 刈り込み時のバイアスの抑制に使用できる簡易な改良型クロスエントロピー損失関数である, 性能重み付き損失関数を提案する。
CelebA、Fitzpatrick17k、CIFAR-10データセットを用いた実験は、提案手法が単純で効果的なツールであることを実証している。
論文 参考訳(メタデータ) (2022-11-18T15:17:28Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
本稿では,最小計算コストで広範囲の検索モデルの性能を向上させるためのフレームワークを提案する。
ベース密度検索法により抽出された事前計算された文書表現を利用する。
実行時に第一段階のメソッドの上に無視可能な計算オーバーヘッドを発生させ、最先端の高密度検索手法と簡単に組み合わせられるようにする。
論文 参考訳(メタデータ) (2021-12-16T10:25:26Z) - Recall@k Surrogate Loss with Large Batches and Similarity Mixup [62.67458021725227]
微分不可能な場合、評価計量の勾配降下による直接最適化は不可能である。
本研究は,リコールにおける相異なるサロゲート損失を提案する。
提案手法は,複数の画像検索ベンチマークにおいて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-08-25T11:09:11Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Progressively Pretrained Dense Corpus Index for Open-Domain Question
Answering [87.32442219333046]
本稿では,段落エンコーダを事前学習するための簡易かつ資源効率の高い手法を提案する。
本手法は,事前学習に7倍の計算資源を使用する既存の高密度検索法より優れている。
論文 参考訳(メタデータ) (2020-04-30T18:09:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。