ProbeSDF: Light Field Probes for Neural Surface Reconstruction
- URL: http://arxiv.org/abs/2412.10084v1
- Date: Fri, 13 Dec 2024 12:18:26 GMT
- Title: ProbeSDF: Light Field Probes for Neural Surface Reconstruction
- Authors: Briac Toussaint, Diego Thomas, Jean-Sébastien Franco,
- Abstract summary: SDF-based differential rendering frameworks have achieved state-of-the-art multiview 3D shape reconstruction.
We re-examine this family of approaches by minimally reformulating its core appearance model.
We show this performance to be consistently achieved on real data over two widely different and popular application fields.
- Score: 4.0130618054041385
- License:
- Abstract: SDF-based differential rendering frameworks have achieved state-of-the-art multiview 3D shape reconstruction. In this work, we re-examine this family of approaches by minimally reformulating its core appearance model in a way that simultaneously yields faster computation and increased performance. To this goal, we exhibit a physically-inspired minimal radiance parametrization decoupling angular and spatial contributions, by encoding them with a small number of features stored in two respective volumetric grids of different resolutions. Requiring as little as four parameters per voxel, and a tiny MLP call inside a single fully fused kernel, our approach allows to enhance performance with both surface and image (PSNR) metrics, while providing a significant training speedup and real-time rendering. We show this performance to be consistently achieved on real data over two widely different and popular application fields, generic object and human subject shape reconstruction, using four representative and challenging datasets.
Related papers
- LinPrim: Linear Primitives for Differentiable Volumetric Rendering [53.780682194322225]
We introduce two new scene representations based on linear primitives-octahedra and tetrahedra-both of which define homogeneous volumes bounded by triangular faces.
This formulation aligns naturally with standard mesh-based tools, minimizing overhead for downstream applications.
We demonstrate comparable performance to state-of-the-art volumetric methods while requiring fewer primitives to achieve similar reconstruction fidelity.
arXiv Detail & Related papers (2025-01-27T18:49:38Z) - RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering [26.988572852463815]
In this paper, we propose a novel end-to-end relightable neural inverse rendering system.
Our algorithm achieves state-of-the-art performance in inverse rendering and relighting.
Our experiments demonstrate that our algorithm achieves state-of-the-art performance in inverse rendering and relighting.
arXiv Detail & Related papers (2024-09-30T09:42:10Z) - VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
We introduce a volumetric optimization framework that combines explicit SDF fields with a shallow color network, in order to estimate 3D shape properties over tetrahedral grids.
Experimental results with Chamfer statistics validate this approach with unprecedented reconstruction quality on various scenarios such as objects, open scenes or human.
arXiv Detail & Related papers (2024-07-29T09:46:39Z) - SD-MVS: Segmentation-Driven Deformation Multi-View Stereo with Spherical
Refinement and EM optimization [6.886220026399106]
We introduce Multi-View Stereo (SD-MVS) to tackle challenges in 3D reconstruction of textureless areas.
We are the first to adopt the Segment Anything Model (SAM) to distinguish semantic instances in scenes.
We propose a unique refinement strategy that combines spherical coordinates and gradient descent on normals and pixelwise search interval on depths.
arXiv Detail & Related papers (2024-01-12T05:25:57Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering.
Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray.
arXiv Detail & Related papers (2023-09-19T05:44:00Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
arXiv Detail & Related papers (2023-06-13T09:02:57Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
We propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without distances.
Our globally sparse and locally dense data structure exploits surfaces' spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data.
Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
arXiv Detail & Related papers (2023-05-22T16:50:19Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - Monocular Real-Time Volumetric Performance Capture [28.481131687883256]
We present the first approach to volumetric performance capture and novel-view rendering at real-time speed from monocular video.
Our system reconstructs a fully textured 3D human from each frame by leveraging Pixel-Aligned Implicit Function (PIFu)
We also introduce an Online Hard Example Mining (OHEM) technique that effectively suppresses failure modes due to the rare occurrence of challenging examples.
arXiv Detail & Related papers (2020-07-28T04:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.