AI in the Cosmos
- URL: http://arxiv.org/abs/2412.10093v1
- Date: Fri, 13 Dec 2024 12:30:11 GMT
- Title: AI in the Cosmos
- Authors: N. Sahakyan,
- Abstract summary: I highlight examples of AI applications in astrophysics, including source classification, spectral energy distribution modeling, and discuss the achievable advancements through generative AI.
The use of AI introduces challenges, including biases, errors, and the "black box" nature of AI models, which must be resolved before their application.
These issues can be addressed through the concept of Human-Guided AI (HG-AI), which integrates human expertise and domain-specific knowledge into AI applications.
- Score: 0.0
- License:
- Abstract: Artificial intelligence (AI) is revolutionizing research by enabling the efficient analysis of large datasets and the discovery of hidden patterns. In astrophysics, AI has become essential, transforming the classification of celestial sources, data modeling, and the interpretation of observations. In this review, I highlight examples of AI applications in astrophysics, including source classification, spectral energy distribution modeling, and discuss the advancements achievable through generative AI. However, the use of AI introduces challenges, including biases, errors, and the "black box" nature of AI models, which must be resolved before their application. These issues can be addressed through the concept of Human-Guided AI (HG-AI), which integrates human expertise and domain-specific knowledge into AI applications. This approach aims to ensure that AI is applied in a robust, interpretable, and ethical manner, leading to deeper insights and fostering scientific excellence.
Related papers
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
An artificial general intelligence (AGI) has been an elusive goal in artificial intelligence (AI) research for some time.
An AGI would have the capability, like a human, to be exposed to a new problem domain, learn about it and then use reasoning processes to make decisions.
This paper presents a small step towards producing an AGI.
arXiv Detail & Related papers (2024-06-17T07:21:44Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
This review aims to provide a foundational understanding of explainable AI (XAI)
XAI offers a set of powerful tools that make the models more transparent.
We identify four significant challenges that XAI faces within the Earth system science (ESS)
A visionary outlook for ESS envisions a harmonious blend where process-based models govern the known, AI models explore the unknown, and XAI bridges the gap by providing explanations.
arXiv Detail & Related papers (2024-06-12T15:05:29Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.