論文の概要: Integrative Analysis of Financial Market Sentiment Using CNN and GRU for Risk Prediction and Alert Systems
- arxiv url: http://arxiv.org/abs/2412.10199v1
- Date: Fri, 13 Dec 2024 15:17:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:38.418474
- Title: Integrative Analysis of Financial Market Sentiment Using CNN and GRU for Risk Prediction and Alert Systems
- Title(参考訳): リスク予測とアラートシステムのためのCNNとGRUを用いた金融市場感の総合分析
- Authors: You Wu, Mengfang Sun, Hongye Zheng, Jinxin Hu, Yingbin Liang, Zhenghao Lin,
- Abstract要約: 本稿では,CNN(Convolutional Neural Networks)とGated Recurrent Units(GRU)を統合することで,株式市場の感情を詳細に検証する。
CNNのロバストな特徴抽出能力は、ネットワークテキストデータの事前処理と分析に利用され、局所的な特徴やパターンを識別する。
抽出した特徴系列はGRUモデルに入力され、時間とともに感情状態が進行し、将来の市場の感情やリスクに潜在的に影響することを理解する。
- 参考スコア(独自算出の注目度): 37.73552608952924
- License:
- Abstract: This document presents an in-depth examination of stock market sentiment through the integration of Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU), enabling precise risk alerts. The robust feature extraction capability of CNN is utilized to preprocess and analyze extensive network text data, identifying local features and patterns. The extracted feature sequences are then input into the GRU model to understand the progression of emotional states over time and their potential impact on future market sentiment and risk. This approach addresses the order dependence and long-term dependencies inherent in time series data, resulting in a detailed analysis of stock market sentiment and effective early warnings of future risks.
- Abstract(参考訳): 本稿では,CNN (Convolutional Neural Networks) と Gated Recurrent Units (GRU) を統合し,正確なリスク警告を可能にすることで,株式市場の感情を詳細に検証する。
CNNのロバストな特徴抽出能力は、ネットワークテキストデータの事前処理と分析に利用され、局所的な特徴やパターンを識別する。
抽出した特徴系列はGRUモデルに入力され、時間とともに感情状態が進行し、将来の市場の感情やリスクに潜在的に影響することを理解する。
このアプローチは、時系列データに固有の順序依存と長期依存に対処し、株式市場のセンチメントを詳細に分析し、将来のリスクを効果的に早期に警告する。
関連論文リスト
- Dynamic graph neural networks for enhanced volatility prediction in financial markets [0.0]
本稿では,グローバル金融市場を動的グラフとして表現するために,グラフニューラルネットワーク(GNN)を用いた新たなアプローチを提案する。
相関に基づくボラティリティ指標とボラティリティ指標を利用することで、テンポラルGATは、ボラティリティ予測の精度を高める有向グラフを構成する。
論文 参考訳(メタデータ) (2024-10-22T09:52:15Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Long Short-Term Memory Pattern Recognition in Currency Trading [0.0]
ワイコフフェイズ(Wyckoff Phases)は、リチャード・D・ワイコフが20世紀初頭に考案したフレームワークである。
本研究は、取引範囲と二次試験の段階を探求し、市場ダイナミクスを理解することの重要性を解明する。
この研究は、これらの相の複雑さを解き明かすことで、市場構造を通して流動性を生み出すことに光を当てている。
この研究は、金融分析とトレーディング戦略におけるAI駆動アプローチの変革の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-23T12:59:49Z) - RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
既存の予測アプローチの多くは、効果的な意思決定に必要な深さを欠いて、単一ポイントの予測に焦点を当てている。
本稿では,不確実性をより効果的に定量化するために,ストック間隔予測のためのシーケンス生成を導入するRAGICを提案する。
RAGICのジェネレータには、情報投資家のリスク認識をキャプチャするリスクモジュールと、歴史的価格動向と季節性を考慮した時間モジュールが含まれている。
論文 参考訳(メタデータ) (2024-02-16T15:34:07Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Stock Broad-Index Trend Patterns Learning via Domain Knowledge Informed
Generative Network [2.1163070161951865]
本稿では、市場固有の特性を意図的に設計したインデックスGANを提案する。
また、実数列と予測列の間のワッサーシュタイン距離を近似するために批判を利用する。
論文 参考訳(メタデータ) (2023-02-27T21:56:56Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
本稿では,時間的注意と多面的注意の考え方に基づいて,ニューラルネットワークの能力を拡張するニューラルネットワーク層を提案する。
本手法の有効性を,大規模書籍市場データを用いて検証した。
論文 参考訳(メタデータ) (2022-01-14T14:02:19Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - ESG2Risk: A Deep Learning Framework from ESG News to Stock Volatility
Prediction [2.686135821234372]
我々は、金融ニュースフローにおけるESGイベントに注目し、株価変動に対するESG関連金融ニュースの予測力を探る。
特に,深層学習モデルのESGニュース抽出,ニュース表現,ベイズ推定のパイプラインを構築した。
論文 参考訳(メタデータ) (2020-05-05T23:01:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。