Controlling dynamical systems into unseen target states using machine learning
- URL: http://arxiv.org/abs/2412.10251v1
- Date: Fri, 13 Dec 2024 16:21:56 GMT
- Title: Controlling dynamical systems into unseen target states using machine learning
- Authors: Daniel Köglmayr, Alexander Haluszczynski, Christoph Räth,
- Abstract summary: We present a model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states.
Our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states.
- Score: 45.84205238554709
- License:
- Abstract: We present a novel, model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states, including those with significantly different and complex dynamics. Leveraging a parameter-aware realization of next-generation reservoir computing, our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states. Crucially, this includes states with dynamics that differ fundamentally from known regimes, such as shifts from periodic to intermittent or chaotic behavior. The method's parameter-awareness facilitates non-stationary control, ensuring smooth transitions between states. By extending the applicability of machine learning-based control mechanisms to previously inaccessible target dynamics, this methodology opens the door to transformative new applications while maintaining exceptional efficiency. Our results highlight reservoir computing as a powerful alternative to traditional methods for dynamic system control.
Related papers
- LeARN: Learnable and Adaptive Representations for Nonlinear Dynamics in System Identification [0.0]
We introduce a nonlinear system identification framework called LeARN.
It transcends the need for prior domain knowledge by learning the library of basis functions directly from data.
We validate our framework on the Neural Fly dataset, showcasing its robust adaptation and capabilities.
arXiv Detail & Related papers (2024-12-16T18:03:23Z) - Tracking control of latent dynamic systems with application to spacecraft attitude control [0.0]
When intelligent spacecraft or space robots perform tasks in a complex environment, the controllable variables are usually not directly available.
While the dynamics of these observations are highly complex, the mechanisms behind them may be simple.
For control of latent dynamic systems, methods based on reinforcement learning suffer from sample inefficiency and generalization problems.
arXiv Detail & Related papers (2024-12-09T09:49:15Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems.
Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude, we achieve significant performance improvements.
arXiv Detail & Related papers (2021-04-16T17:47:02Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems.
We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model.
arXiv Detail & Related papers (2020-04-23T14:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.