Tracking control of latent dynamic systems with application to spacecraft attitude control
- URL: http://arxiv.org/abs/2412.06342v1
- Date: Mon, 09 Dec 2024 09:49:15 GMT
- Title: Tracking control of latent dynamic systems with application to spacecraft attitude control
- Authors: Congxi Zhang, Yongchun Xie,
- Abstract summary: When intelligent spacecraft or space robots perform tasks in a complex environment, the controllable variables are usually not directly available.
While the dynamics of these observations are highly complex, the mechanisms behind them may be simple.
For control of latent dynamic systems, methods based on reinforcement learning suffer from sample inefficiency and generalization problems.
- Score: 0.0
- License:
- Abstract: When intelligent spacecraft or space robots perform tasks in a complex environment, the controllable variables are usually not directly available and have to be inferred from high-dimensional observable variables, such as outputs of neural networks or images. While the dynamics of these observations are highly complex, the mechanisms behind them may be simple, which makes it possible to regard them as latent dynamic systems. For control of latent dynamic systems, methods based on reinforcement learning suffer from sample inefficiency and generalization problems. In this work, we propose an asymptotic tracking controller for latent dynamic systems. The latent variables are related to the high-dimensional observations through an unknown nonlinear function. The dynamics are unknown but assumed to be affine nonlinear. To realize asymptotic tracking, an identifiable latent dynamic model is learned to recover the latents and estimate the dynamics. This training process does not depend on the goals or reference trajectories. Based on the learned model, we use a manually designed feedback linearization controller to ensure the asymptotic tracking property of the closed-loop system. After considering fully controllable systems, the results are extended to the case that uncontrollable environmental latents exist. As an application, simulation experiments on a latent spacecraft attitude dynamic model are conducted to verify the proposed methods, and the observation noise and control deviation are taken into consideration.
Related papers
- Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
We study the problem of identifiable representation and model learning for latent dynamic systems.
We prove that, for linear and affine nonlinear latent dynamic systems with sparse input matrices, it is possible to identify the latent variables up to scaling.
arXiv Detail & Related papers (2024-10-23T13:55:42Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals.
Existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity.
We propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise.
arXiv Detail & Related papers (2024-08-29T18:58:39Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
We propose Control with Inherent Lyapunov Stability (CoILS) as a method for jointly learning parametric representations of a nonlinear dynamics model and a stabilizing controller from data.
In addition to the stabilizability of the learned dynamics guaranteed by our novel construction, we show that the learned controller stabilizes the true dynamics under certain assumptions on the fidelity of the learned dynamics.
arXiv Detail & Related papers (2023-03-06T14:21:42Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
We present LG-ODE, a latent ordinary differential equation generative model for modeling multi-agent dynamic system with known graph structure.
It can simultaneously learn the embedding of high dimensional trajectories and infer continuous latent system dynamics.
Our model employs a novel encoder parameterized by a graph neural network that can infer initial states in an unsupervised way.
arXiv Detail & Related papers (2020-11-08T01:02:22Z) - Heteroscedastic Uncertainty for Robust Generative Latent Dynamics [7.107159120605662]
We present a method to jointly learn a latent state representation and the associated dynamics.
As our main contribution, we describe how our representation is able to capture a notion of heteroscedastic or input-specific uncertainty.
We present results from prediction and control experiments on two image-based tasks.
arXiv Detail & Related papers (2020-08-18T21:04:33Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.