Cultural Evolution of Cooperation among LLM Agents
- URL: http://arxiv.org/abs/2412.10270v1
- Date: Fri, 13 Dec 2024 16:45:49 GMT
- Title: Cultural Evolution of Cooperation among LLM Agents
- Authors: Aron Vallinder, Edward Hughes,
- Abstract summary: We study whether a "society" of AI agents can learn mutually beneficial social norms in the face of incentives to defect.
We find that the evolution of cooperation differs markedly across base models.
- Score: 1.4261864659766343
- License:
- Abstract: Large language models (LLMs) provide a compelling foundation for building generally-capable AI agents. These agents may soon be deployed at scale in the real world, representing the interests of individual humans (e.g., AI assistants) or groups of humans (e.g., AI-accelerated corporations). At present, relatively little is known about the dynamics of multiple LLM agents interacting over many generations of iterative deployment. In this paper, we examine whether a "society" of LLM agents can learn mutually beneficial social norms in the face of incentives to defect, a distinctive feature of human sociality that is arguably crucial to the success of civilization. In particular, we study the evolution of indirect reciprocity across generations of LLM agents playing a classic iterated Donor Game in which agents can observe the recent behavior of their peers. We find that the evolution of cooperation differs markedly across base models, with societies of Claude 3.5 Sonnet agents achieving significantly higher average scores than Gemini 1.5 Flash, which, in turn, outperforms GPT-4o. Further, Claude 3.5 Sonnet can make use of an additional mechanism for costly punishment to achieve yet higher scores, while Gemini 1.5 Flash and GPT-4o fail to do so. For each model class, we also observe variation in emergent behavior across random seeds, suggesting an understudied sensitive dependence on initial conditions. We suggest that our evaluation regime could inspire an inexpensive and informative new class of LLM benchmarks, focussed on the implications of LLM agent deployment for the cooperative infrastructure of society.
Related papers
- Emergence of human-like polarization among large language model agents [61.622596148368906]
We simulate a networked system involving thousands of large language model agents, discovering their social interactions, result in human-like polarization.
Similarities between humans and LLM agents raise concerns about their capacity to amplify societal polarization, but also hold the potential to serve as a valuable testbed for identifying plausible strategies to mitigate it.
arXiv Detail & Related papers (2025-01-09T11:45:05Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.
We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.
In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
We investigate the dynamics of conventions within populations of Large Language Model (LLM) agents using simulated interactions.
We show that globally accepted social conventions can spontaneously arise from local interactions between communicating LLMs.
Minority groups of committed LLMs can drive social change by establishing new social conventions.
arXiv Detail & Related papers (2024-10-11T16:16:38Z) - Moral Alignment for LLM Agents [3.7414804164475983]
We introduce the design of reward functions that explicitly encode core human values for Reinforcement Learning-based fine-tuning of foundation agent models.
We evaluate our approach using the traditional philosophical frameworks of Deontological Ethics and Utilitarianism.
We show how moral fine-tuning can be deployed to enable an agent to unlearn a previously developed selfish strategy.
arXiv Detail & Related papers (2024-10-02T15:09:36Z) - Artificial Leviathan: Exploring Social Evolution of LLM Agents Through the Lens of Hobbesian Social Contract Theory [8.80864059602965]
Large Language Models (LLMs) and advancements in Artificial Intelligence (AI) offer an opportunity for computational social science research at scale.
Our work introduces a simulated agent society where complex social relationships dynamically form and evolve over time.
We analyze whether, as the theory postulates, agents seek to escape a brutish "state of nature" by surrendering rights to an absolute sovereign in exchange for order and security.
arXiv Detail & Related papers (2024-06-20T14:42:58Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
We propose a novel gradient-based state representation for multi-agent reinforcement learning.
We employ denoising score matching to learn the social gradient fields (SocialGFs) from offline samples.
In practice, we integrate SocialGFs into the widely used multi-agent reinforcement learning algorithms, e.g., MAPPO.
arXiv Detail & Related papers (2024-05-03T04:12:19Z) - Bias Amplification in Language Model Evolution: An Iterated Learning Perspective [27.63295869974611]
We draw parallels between the behavior of Large Language Models (LLMs) and the evolution of human culture.
Our approach involves leveraging Iterated Learning (IL), a Bayesian framework that elucidates how subtle biases are magnified during human cultural evolution.
This paper outlines key characteristics of agents' behavior in the Bayesian-IL framework, including predictions that are supported by experimental verification.
arXiv Detail & Related papers (2024-04-04T02:01:25Z) - Emergent Dominance Hierarchies in Reinforcement Learning Agents [5.451419559128312]
Modern Reinforcement Learning (RL) algorithms are able to outperform humans in a wide variety of tasks.
We show that populations of RL agents can invent, learn, enforce, and transmit a dominance hierarchy to new populations.
The dominance hierarchies that emerge have a similar structure to those studied in chickens, mice, fish, and other species.
arXiv Detail & Related papers (2024-01-21T16:59:45Z) - Agent Alignment in Evolving Social Norms [65.45423591744434]
We propose an evolutionary framework for agent evolution and alignment, named EvolutionaryAgent.
In an environment where social norms continuously evolve, agents better adapted to the current social norms will have a higher probability of survival and proliferation.
We show that EvolutionaryAgent can align progressively better with the evolving social norms while maintaining its proficiency in general tasks.
arXiv Detail & Related papers (2024-01-09T15:44:44Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.