論文の概要: One world, one opinion? The superstar effect in LLM responses
- arxiv url: http://arxiv.org/abs/2412.10281v1
- Date: Fri, 13 Dec 2024 17:03:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:10.689494
- Title: One world, one opinion? The superstar effect in LLM responses
- Title(参考訳): 一つの世界と一つの意見 : LLM反応におけるスーパースター効果
- Authors: Sofie Goethals, Lauren Rhue,
- Abstract要約: 大規模言語モデル(LLM)は、情報の共有とオンラインアクセスの方法を形作っている。
本研究では,10言語におけるプロンプトを用いて,LLMを各分野において最も顕著な人物とみなす人物について検討した。
- 参考スコア(独自算出の注目度): 0.4604003661048266
- License:
- Abstract: As large language models (LLMs) are shaping the way information is shared and accessed online, their opinions have the potential to influence a wide audience. This study examines who the LLMs view as the most prominent figures across various fields, using prompts in ten different languages to explore the influence of linguistic diversity. Our findings reveal low diversity in responses, with a small number of figures dominating recognition across languages (also known as the "superstar effect"). These results highlight the risk of narrowing global knowledge representation when LLMs retrieve subjective information.
- Abstract(参考訳): 大規模言語モデル(LLM)は、情報の共有やオンラインアクセスの仕方を形作っているため、彼らの意見は幅広い聴衆に影響を与える可能性がある。
本研究は,LLMが言語多様性の影響を探求するために,各分野において最も顕著な人物とみなす人物について,10言語におけるプロンプトを用いて検討した。
結果,反応の多様性は低く,言語間での認識(スーパースター効果とも呼ばれる)は少ない。
これらの結果は,LLMが主観的情報を取得する場合に,グローバルな知識表現を狭めるリスクを浮き彫りにする。
関連論文リスト
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
ヘイト検出などの主観的タスクでは,人々が嫌悪感を知覚する場合には,多様なグループを表現できるLarge Language Model(LLM)の能力は不明確である。
追加の文脈をプロンプトに含めることで、LLMの地理的プライミングに対する感受性、ペルソナ属性、数値情報を分析し、様々なグループのニーズがどの程度反映されているかを評価する。
論文 参考訳(メタデータ) (2024-10-03T16:43:17Z) - Faux Polyglot: A Study on Information Disparity in Multilingual Large Language Models [7.615938028813914]
Retrieval Augmented Generation (RAG)により、Large Language Models (LLM) は情報検索において重要な役割を担っている。
RAGに基づく情報検索において,LLMの言語的嗜好について検討した。
その結果,LLMは問合せ言語と同一言語における情報に対して,情報検索と回答生成の両方において,体系的な偏りを示した。
論文 参考訳(メタデータ) (2024-07-07T21:26:36Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Towards Truthful Multilingual Large Language Models: Benchmarking and Alignment Strategies [38.3269908062146]
多言語シナリオにおける真理性評価のためのベンチマークを構築する。
多数の言語にまたがるデータ割り当てを最適化するために,Fact-aware Multilingual Selective Synergy (FaMSS)を提案する。
論文 参考訳(メタデータ) (2024-06-20T15:59:07Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
マルチモーダル大言語モデルのどの層がグローバルな画像情報に最も力を注いでいるかを検討する。
本研究では,モデルの中間層が,よりグローバルな意味情報を符号化できることを見出した。
最上位のレイヤが過度にローカル情報に集中していることが分かり、グローバル情報をエンコードする能力の低下につながります。
論文 参考訳(メタデータ) (2024-02-27T08:27:15Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Quantifying the Impact of Large Language Models on Collective Opinion
Dynamics [7.0012506428382375]
我々は、大言語モデル(LLM)の意見をエンコードするために、意見ネットワークダイナミクスモデルを作成する。
その結果, LLMのアウトプットは, 集団的意見差に一意かつ肯定的な影響を及ぼすことが明らかとなった。
我々の実験は、反対/中立/ランダムの意見を持つ追加のエージェントを導入することで、バイアスや有害なアウトプットの影響を効果的に軽減できることを示した。
論文 参考訳(メタデータ) (2023-08-07T05:45:17Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。