論文の概要: Towards Truthful Multilingual Large Language Models: Benchmarking and Alignment Strategies
- arxiv url: http://arxiv.org/abs/2406.14434v1
- Date: Thu, 20 Jun 2024 15:59:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:52:55.920352
- Title: Towards Truthful Multilingual Large Language Models: Benchmarking and Alignment Strategies
- Title(参考訳): 真正な多言語大言語モデルに向けて:ベンチマークとアライメント戦略
- Authors: Weihao Liu, Ning Wu, Wenbiao Ding, Shining Liang, Ming Gong, Dongmei Zhang,
- Abstract要約: 多言語シナリオにおける真理性評価のためのベンチマークを構築する。
多数の言語にまたがるデータ割り当てを最適化するために,Fact-aware Multilingual Selective Synergy (FaMSS)を提案する。
- 参考スコア(独自算出の注目度): 38.3269908062146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of large language models (LLMs), building multilingual large language models (MLLMs) that can serve users worldwide holds great significance. However, existing research seldom focuses on the truthfulness of MLLMs. Meanwhile, contemporary multilingual aligning technologies struggle to balance massive languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we construct a benchmark for truthfulness evaluation in multilingual scenarios and explore the ways to align facts across languages to enhance the truthfulness of MLLMs. Furthermore, we propose Fact-aware Multilingual Selective Synergy (FaMSS) to optimize the data allocation across a large number of languages and different data types. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and enhance the multilingual capabilities of LLMs.
- Abstract(参考訳): 大規模言語モデル (LLMs) の時代には、世界中のユーザに提供可能な多言語大規模言語モデル (MLLMs) の構築が大きな意味を持つ。
しかし、既存の研究はMLLMの真偽にはほとんど焦点を当てていない。
一方、現代多言語整合技術は、大規模な言語のバランスをとるのに苦労し、しばしば異なる言語、特に英語と大きく異なる言語間で深刻な真理性のギャップを生じさせる。
本研究では,多言語シナリオにおける真理性評価のベンチマークを構築し,MLLMの真理性を高めるために言語間で事実を整合させる方法について検討する。
さらに,Fact-aware Multilingual Selective Synergy (FaMSS)を提案する。
実験結果から,本手法は多言語表現の相違を効果的に低減し,LLMの多言語能力を高めることができることが示された。
関連論文リスト
- Faux Polyglot: A Study on Information Disparity in Multilingual Large Language Models [7.615938028813914]
Retrieval Augmented Generation (RAG)により、Large Language Models (LLM) は情報検索において重要な役割を担っている。
RAGに基づく情報検索において,LLMの言語的嗜好について検討した。
その結果,LLMは問合せ言語と同一言語における情報に対して,情報検索と回答生成の両方において,体系的な偏りを示した。
論文 参考訳(メタデータ) (2024-07-07T21:26:36Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation [25.850573463743352]
大規模多言語事前訓練言語モデル(mPLMs)は、言語横断タスクにおいて優れた性能を発揮する。
しかし、mPLM内では異なる言語にまたがって大きな性能格差が存在する。
我々は ALSACE を導入し,優れた言語から学んだ知識を活用して,mPLM の低性能言語を誘導する。
論文 参考訳(メタデータ) (2024-04-12T14:19:16Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.104497013562654]
本稿では,MLLMの進化,鍵技術,多言語能力について概説する。
我々は、MLLMのトレーニングや下流タスクに適した多言語データセットに広く利用されている多言語コーパスについて検討する。
本稿では,MLLMのカテゴリと評価指標を含むバイアスについて論じ,既存のデバイアス手法を要約する。
論文 参考訳(メタデータ) (2024-04-01T05:13:56Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised
Fine-tuning Dataset [69.33424532827608]
オープンソースの大規模言語モデル(LLM)は、様々な分野において大きな強みを持っている。
本研究では,オープンソースの多言語教師付き微調整データセットを構築する。
結果として得られたUltraLinkデータセットは、5つの言語にわたる約100万のサンプルで構成されている。
論文 参考訳(メタデータ) (2024-02-07T05:05:53Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
既存の大きな言語モデルは、異なる言語間で異なる能力を示す。
本稿では,言語間のセマンティックアライメントを構築することで,英語以外の言語に事前学習したLLMを強化する。
論文 参考訳(メタデータ) (2023-08-09T13:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。