論文の概要: DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
- arxiv url: http://arxiv.org/abs/2412.10302v1
- Date: Fri, 13 Dec 2024 17:37:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:04:27.823492
- Title: DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
- Title(参考訳): DeepSeek-VL2:Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
- Authors: Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, Yisong Wang, Chong Ruan,
- Abstract要約: We present DeepSeek-VL2, a Advanced series of large Mixture-of-Experts (MoE) Vision-Language Models。
ビジョンコンポーネントには、アスペクト比の異なる高解像度画像を処理するために設計された動的タイリングビジョン符号化戦略が組み込まれている。
言語コンポーネントについては、Multi-head Latent AttentionメカニズムでDeepSeekMoEモデルを活用します。
- 参考スコア(独自算出の注目度): 39.14141055325595
- License:
- Abstract: We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding strategy designed for processing high-resolution images with different aspect ratios. For the language component, we leverage DeepSeekMoE models with the Multi-head Latent Attention mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models. Codes and pre-trained models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.
- Abstract(参考訳): We present DeepSeek-VL2, a advanced series of large Mixture-of-Experts (MoE) Vision-Language Models。
ビジョンコンポーネントには、アスペクト比の異なる高解像度画像を処理するために設計された動的タイリングビジョン符号化戦略が組み込まれている。
言語コンポーネントでは、キーバリューキャッシュを潜在ベクトルに圧縮するMulti-head Latent Attentionメカニズムを用いてDeepSeekMoEモデルを活用し、効率的な推論と高いスループットを実現する。
改良された視覚言語データセットに基づいてトレーニングされたDeepSeek-VL2は、視覚的質問応答、光学的文字認識、文書/テーブル/チャート理解、視覚的接地など、さまざまなタスクにまたがる優れた機能を示している。
モデルシリーズは,DeepSeek-VL2-Tiny,DeepSeek-VL2-Small,DeepSeek-VL2の3種類で構成され,それぞれ1.0B,2.8B,4.5Bが活性化された。
DeepSeek-VL2は、既存のオープンソースの高密度モデルやMoEベースのモデルと比較して、類似または少ないアクティベートパラメータで、競合や最先端のパフォーマンスを達成する。
コードと事前訓練されたモデルはhttps://github.com/deepseek-ai/deepSeek-VL2で公開されている。
関連論文リスト
- ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
我々は、幅広い下流タスクを扱える普遍的な埋め込みモデルを構築している。
1 MMEB(Massive Multimodal Embedding Benchmark)は、4 つのメタタスク(分類、視覚的質問応答、マルチモーダル検索、視覚的グラウンド)と36 つのデータセット(20 のトレーニングと16 の評価データセットを含む)と、2 の VLM2Vec (Vision-Language Model -> Vector) を含む。
論文 参考訳(メタデータ) (2024-10-07T16:14:05Z) - Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution [82.38677987249348]
本稿では,従来の視覚処理における既定分解能アプローチを再定義するQwen2-VLシリーズを提案する。
Qwen2-VLでは、さまざまな解像度の画像を異なる数のビジュアルトークンに動的に処理できるNaive Dynamic Resolutionメカニズムが導入されている。
また、Multimodal Rotary Position Embedding (M-RoPE)を統合し、テキスト、画像、ビデオ間で位置情報の効果的な融合を容易にする。
論文 参考訳(メタデータ) (2024-09-18T17:59:32Z) - DeepSeek-VL: Towards Real-World Vision-Language Understanding [24.57011093316788]
本稿では、実世界のビジョンと言語理解アプリケーションのためのオープンソースのVision-Language(VL)モデルであるDeepSeek-VLを紹介する。
当社のアプローチは,3つの重要な側面に基づいて構成されています。
実際のユーザシナリオからユースケース分類を作成し、インストラクションチューニングデータセットを構築します。
論文 参考訳(メタデータ) (2024-03-08T18:46:00Z) - Self-Adapting Large Visual-Language Models to Edge Devices across Visual Modalities [11.53488611812612]
近年のVision-Language(VL)モデルの進歩は、エッジデバイスへの展開への関心を喚起している。
We introduced EdgeVL, a novel framework that seamlessly integrates dual-modality knowledge distillation and Quantization-aware contrastive learning。
私たちの研究は、エッジデプロイメントに大規模なVLモデルを適応するための最初の体系的な取り組みであり、複数のデータセットで最大15.4%の精度向上と、最大93倍のモデルサイズ削減を示している。
論文 参考訳(メタデータ) (2024-03-07T21:34:40Z) - EVP: Enhanced Visual Perception using Inverse Multi-Attentive Feature
Refinement and Regularized Image-Text Alignment [40.328294121805456]
この研究は、コンピュータビジョンタスクにStable Diffusionネットワークを使用する方法を舗装した以前のVPDに基づいている。
Inverse Multi-Attentive Feature Refinement (IMAFR) モジュールを開発した。
第2に、安定拡散バックボーンの特徴抽出を改善するための新しい画像テキストアライメントモジュールを提案する。
論文 参考訳(メタデータ) (2023-12-13T22:20:45Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
MLLM(Multimodal Large Language Models)は、マルチモーダル信号の知覚と理解が可能なLLMを提供する。
既存のMLLMの多くは、大まかに整列された画像テキストペアで事前訓練された視覚エンコーダを採用しており、視覚知識の抽出と推論が不十分である。
本稿では,2段階の視覚的知識を注入することによってMLLMを増強する,デュアルレベルvIsual knedgeOwl eNhanced Multimodal Large Language Model (LION)を提案する。
論文 参考訳(メタデータ) (2023-11-20T15:56:44Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
我々は、視覚言語知識蒸留(VLKD)を通して、テキスト事前学習言語モデル(PLM)を用いた視覚言語事前学習モデルの拡張を提案する。
実験の結果,複数モーダル生成タスクにおいて,視覚的質問応答や画像キャプションなどのゼロショット性能が強いことがわかった。
PLMの本来のテキスト言語理解と生成能力は、VLKDの後に維持される。
論文 参考訳(メタデータ) (2022-03-12T09:33:37Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
我々は,観測された空間コンテキストを捉えるために,グラフ伝搬を採用することを提案する。
次に、注意機構を伝搬に適用し、ネットワークが文脈情報を適応的にモデル化することを奨励する。
最後に、抽出したマルチモーダル特徴を効果的に活用するための対称ゲート融合戦略を導入する。
本稿では,Adaptive Context-Aware Multi-Modal Network (ACMNet) を2つのベンチマークで評価した。
論文 参考訳(メタデータ) (2020-08-25T06:00:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。