A Grounded Typology of Word Classes
- URL: http://arxiv.org/abs/2412.10369v1
- Date: Fri, 13 Dec 2024 18:58:48 GMT
- Title: A Grounded Typology of Word Classes
- Authors: Coleman Haley, Sharon Goldwater, Edoardo Ponti,
- Abstract summary: Inspired by information theory, we define "groundedness", an empirical measure of semantic contentfulness.
Our measure captures the contentfulness asymmetry between functional (grammatical) and lexical (content) classes across languages.
We release a dataset of groundedness scores for 30 languages.
- Score: 7.201565960962933
- License:
- Abstract: We propose a grounded approach to meaning in language typology. We treat data from perceptual modalities, such as images, as a language-agnostic representation of meaning. Hence, we can quantify the function--form relationship between images and captions across languages. Inspired by information theory, we define "groundedness", an empirical measure of contextual semantic contentfulness (formulated as a difference in surprisal) which can be computed with multilingual multimodal language models. As a proof of concept, we apply this measure to the typology of word classes. Our measure captures the contentfulness asymmetry between functional (grammatical) and lexical (content) classes across languages, but contradicts the view that functional classes do not convey content. Moreover, we find universal trends in the hierarchy of groundedness (e.g., nouns > adjectives > verbs), and show that our measure partly correlates with psycholinguistic concreteness norms in English. We release a dataset of groundedness scores for 30 languages. Our results suggest that the grounded typology approach can provide quantitative evidence about semantic function in language.
Related papers
- Tomato, Tomahto, Tomate: Measuring the Role of Shared Semantics among Subwords in Multilingual Language Models [88.07940818022468]
We take an initial step on measuring the role of shared semantics among subwords in the encoder-only multilingual language models (mLMs)
We form "semantic tokens" by merging the semantically similar subwords and their embeddings.
inspections on the grouped subwords show that they exhibit a wide range of semantic similarities.
arXiv Detail & Related papers (2024-11-07T08:38:32Z) - Investigating Idiomaticity in Word Representations [9.208145117062339]
We focus on noun compounds of varying levels of idiomaticity in two languages (English and Portuguese)
We present a dataset of minimal pairs containing human idiomaticity judgments for each noun compound at both type and token levels.
We define a set of fine-grained metrics of Affinity and Scaled Similarity to determine how sensitive the models are to perturbations that may lead to changes in idiomaticity.
arXiv Detail & Related papers (2024-11-04T21:05:01Z) - Computer Vision Datasets and Models Exhibit Cultural and Linguistic
Diversity in Perception [28.716435050743957]
We study how people from different cultural backgrounds observe vastly different concepts even when viewing the same visual stimuli.
By comparing textual descriptions generated across 7 languages for the same images, we find significant differences in the semantic content and linguistic expression.
Our work points towards the need to accounttuning for and embrace the diversity of human perception in the computer vision community.
arXiv Detail & Related papers (2023-10-22T16:51:42Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Explainable Semantic Space by Grounding Language to Vision with
Cross-Modal Contrastive Learning [3.441021278275805]
We design a two-stream model for grounding language learning in vision.
The model first learns to align visual and language representations with the MS COCO dataset.
After training, the language stream of this model is a stand-alone language model capable of embedding concepts in a visually grounded semantic space.
arXiv Detail & Related papers (2021-11-13T19:54:15Z) - Provable Limitations of Acquiring Meaning from Ungrounded Form: What
will Future Language Models Understand? [87.20342701232869]
We investigate the abilities of ungrounded systems to acquire meaning.
We study whether assertions enable a system to emulate representations preserving semantic relations like equivalence.
We find that assertions enable semantic emulation if all expressions in the language are referentially transparent.
However, if the language uses non-transparent patterns like variable binding, we show that emulation can become an uncomputable problem.
arXiv Detail & Related papers (2021-04-22T01:00:17Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Aspectuality Across Genre: A Distributional Semantics Approach [25.816944882581343]
The interpretation of the lexical aspect of verbs in English plays a crucial role for recognizing textual entailment and learning discourse-level inferences.
We show that two elementary dimensions of aspectual class, states vs. events, and telic vs. atelic events, can be modelled effectively with distributional semantics.
arXiv Detail & Related papers (2020-10-31T19:37:22Z) - The Typology of Polysemy: A Multilingual Distributional Framework [6.753781783859273]
We present a novel framework that quantifies semantic affinity, the cross-linguistic similarity of lexical semantics for a concept.
Our results reveal an intricate interaction between semantic domains and extra-linguistic factors, beyond language phylogeny.
arXiv Detail & Related papers (2020-06-02T22:31:40Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
We investigate the language-neutrality of multilingual contextual embeddings directly and with respect to lexical semantics.
Our results show that contextual embeddings are more language-neutral and, in general, more informative than aligned static word-type embeddings.
We show how to reach state-of-the-art accuracy on language identification and match the performance of statistical methods for word alignment of parallel sentences.
arXiv Detail & Related papers (2020-04-09T19:50:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.