論文の概要: An Interoperable Machine Learning Pipeline for Pediatric Obesity Risk Estimation
- arxiv url: http://arxiv.org/abs/2412.10454v1
- Date: Thu, 12 Dec 2024 07:25:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:00:34.612136
- Title: An Interoperable Machine Learning Pipeline for Pediatric Obesity Risk Estimation
- Title(参考訳): 小児肥満リスク推定のための相互運用型機械学習パイプライン
- Authors: Hamed Fayyaz, Mehak Gupta, Alejandra Perez Ramirez, Claudine Jurkovitz, H. Timothy Bunnell, Thao-Ly T. Phan, Rahmatollah Beheshti,
- Abstract要約: 現在、既存のMLモデルに基づく一般的な臨床診断支援ツールが存在しない。
本研究では,小児の肥満予測に特化して設計された新しいエンドツーエンドパイプラインを提案する。
私たちのパイプラインは、APIやユーザインターフェース経由でのデータ抽出、推論、通信のプロセス全体をサポートします。
- 参考スコア(独自算出の注目度): 39.82363561134585
- License:
- Abstract: Reliable prediction of pediatric obesity can offer a valuable resource to providers, helping them engage in timely preventive interventions before the disease is established. Many efforts have been made to develop ML-based predictive models of obesity, and some studies have reported high predictive performances. However, no commonly used clinical decision support tool based on existing ML models currently exists. This study presents a novel end-to-end pipeline specifically designed for pediatric obesity prediction, which supports the entire process of data extraction, inference, and communication via an API or a user interface. While focusing only on routinely recorded data in pediatric electronic health records (EHRs), our pipeline uses a diverse expert-curated list of medical concepts to predict the 1-3 years risk of developing obesity. Furthermore, by using the Fast Healthcare Interoperability Resources (FHIR) standard in our design procedure, we specifically target facilitating low-effort integration of our pipeline with different EHR systems. In our experiments, we report the effectiveness of the predictive model as well as its alignment with the feedback from various stakeholders, including ML scientists, providers, health IT personnel, health administration representatives, and patient group representatives.
- Abstract(参考訳): 小児肥満の信頼性の高い予測は、提供者に貴重な資源を提供し、病気が確立する前にタイムリーに予防的介入を行うのに役立つ。
肥満のMLベースの予測モデルの開発には多くの取り組みがなされており、いくつかの研究では高い予測性能が報告されている。
しかし、既存のMLモデルに基づく一般的な臨床意思決定支援ツールは存在しない。
本研究では,小児の肥満予測に特化して設計された新しいエンドツーエンドパイプラインを提案する。このパイプラインは,APIやユーザインターフェースを介してのデータ抽出,推論,コミュニケーションのプロセス全体をサポートする。
小児電子健康記録(EHR)で日常的に記録されるデータにのみ焦点をあてる一方で、当社のパイプラインは、肥満を発症する1~3年のリスクを予測するために、さまざまな専門家による医療概念のリストを用いています。
さらに、私たちの設計手順でFHIR(Fast Healthcare Interoperability Resources)標準を使用することで、パイプラインと異なるEHRシステムとの低便宜統合の促進を特に目標としています。
本実験では, 予測モデルの有効性と, ML科学者, 提供者, 保健IT職員, 健康管理代表者, 患者グループ代表者など, 様々な利害関係者からのフィードバックとの整合性について報告する。
関連論文リスト
- MPLite: Multi-Aspect Pretraining for Mining Clinical Health Records [13.4100093553808]
本稿では,医療概念の表現性を高めるために,軽量ニューラルネットワークを用いたマルチアスペクトプレトレーニングとラボの結果を利用する新しいフレームワークMPLiteを提案する。
我々は、実験結果に基づいて医療コードを予測し、特徴の複数の側面を融合させることで堅牢な予測を保証する事前学習モジュールを設計する。
論文 参考訳(メタデータ) (2024-11-17T19:43:10Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hospitalization Length of Stay Prediction using Patient Event Sequences [4.204781617630707]
本稿では,患者情報をイベントのシーケンスとしてモデル化し,入院期間(LOS)を予測するための新しいアプローチを提案する。
本稿では,患者の医療イベントシーケンスを記述したユニークな特徴を用いたLOS予測のためのトランスフォーマーベースモデルMedic-BERT(M-BERT)を提案する。
実験結果から,M-BERTは様々なLOS問題に対して高い精度を達成でき,従来の非シーケンスベース機械学習手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-20T11:48:36Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
医学史の時間的モデリングは、将来の出来事を予測し、シミュレートしたり、リスクを見積り、代替診断を提案したり、合併症を予測するために使用することができる。
我々は、文書テキストを構造化されたコード化された概念に変換するためにNER+Lツール(MedCAT)を使用する新しいGPT3ベースのパイプラインであるForesightを提示する。
論文 参考訳(メタデータ) (2022-12-13T19:06:00Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
本稿では,情報フローを組み込んだハイパーボリック埋め込み手法を提案する。
我々は、これらの事前学習された表現をグラフニューラルネットワークに組み込んで、疾患の合併症を検出する。
本稿では,EHRデータを完全に活用する自己教師付き学習フレームワークに,階層型で強化された履歴予測代行タスクを提案する。
論文 参考訳(メタデータ) (2021-06-09T00:42:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。