VCA: Video Curious Agent for Long Video Understanding
- URL: http://arxiv.org/abs/2412.10471v1
- Date: Thu, 12 Dec 2024 23:39:54 GMT
- Title: VCA: Video Curious Agent for Long Video Understanding
- Authors: Zeyuan Yang, Delin Chen, Xueyang Yu, Maohao Shen, Chuang Gan,
- Abstract summary: We introduce a curiosity-driven video agent with self-exploration capability, dubbed as VCA.
Built upon VLMs, VCA autonomously navigates video segments and efficiently builds a comprehensive understanding of complex video sequences.
- Score: 44.19323180593379
- License:
- Abstract: Long video understanding poses unique challenges due to their temporal complexity and low information density. Recent works address this task by sampling numerous frames or incorporating auxiliary tools using LLMs, both of which result in high computational costs. In this work, we introduce a curiosity-driven video agent with self-exploration capability, dubbed as VCA. Built upon VLMs, VCA autonomously navigates video segments and efficiently builds a comprehensive understanding of complex video sequences. Instead of directly sampling frames, VCA employs a tree-search structure to explore video segments and collect frames. Rather than relying on external feedback or reward, VCA leverages VLM's self-generated intrinsic reward to guide its exploration, enabling it to capture the most crucial information for reasoning. Experimental results on multiple long video benchmarks demonstrate our approach's superior effectiveness and efficiency.
Related papers
- VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM [81.15525024145697]
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding.
However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details.
We introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding.
arXiv Detail & Related papers (2024-12-31T18:56:46Z) - Agent-based Video Trimming [17.519404251018308]
We introduce a novel task called Video Trimming (VT)
VT focuses on detecting wasted footage, selecting valuable segments, and composing them into a final video with a coherent story.
AVT received more favorable evaluations in user studies and demonstrated superior mAP and precision on the YouTube Highlights, TVSum, and our own dataset for the highlight detection task.
arXiv Detail & Related papers (2024-12-12T17:59:28Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
We introduce SALOVA: Segment-Augmented Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content.
We present a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich context.
Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries.
arXiv Detail & Related papers (2024-11-25T08:04:47Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - OmAgent: A Multi-modal Agent Framework for Complex Video Understanding with Task Divide-and-Conquer [14.503628667535425]
processing extensive videos presents significant challenges due to the vast data and processing demands.
We develop OmAgent, efficiently stores and retrieves relevant video frames for specific queries.
It features an Divide-and-Conquer Loop capable of autonomous reasoning.
We have endowed it with greater autonomy and a robust tool-calling system, enabling it to accomplish even more intricate tasks.
arXiv Detail & Related papers (2024-06-24T13:05:39Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - Temporal Context Aggregation for Video Retrieval with Contrastive
Learning [81.12514007044456]
We propose TCA, a video representation learning framework that incorporates long-range temporal information between frame-level features.
The proposed method shows a significant performance advantage (17% mAP on FIVR-200K) over state-of-the-art methods with video-level features.
arXiv Detail & Related papers (2020-08-04T05:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.