論文の概要: Dynamic Entity-Masked Graph Diffusion Model for histopathological image Representation Learning
- arxiv url: http://arxiv.org/abs/2412.10482v1
- Date: Fri, 13 Dec 2024 10:18:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:00.162444
- Title: Dynamic Entity-Masked Graph Diffusion Model for histopathological image Representation Learning
- Title(参考訳): 動的Entity-Masked Graph Diffusion Modelによる病理画像表現学習
- Authors: Zhenfeng Zhuang, Min Cen, Yanfeng Li, Fangyu Zhou, Lequan Yu, Baptiste Magnier, Liansheng Wang,
- Abstract要約: 動的Entity-Masked Graph Diffusion Modelによる自己管理型病理画像表現学習法であるH-MGDMを紹介する。
具体的には,予備訓練において,相補的な部分グラフを潜時拡散条件として,自己教師対象として用いることを提案する。
- 参考スコア(独自算出の注目度): 25.197342542821843
- License:
- Abstract: Significant disparities between the features of natural images and those inherent to histopathological images make it challenging to directly apply and transfer pre-trained models from natural images to histopathology tasks. Moreover, the frequent lack of annotations in histopathology patch images has driven researchers to explore self-supervised learning methods like mask reconstruction for learning representations from large amounts of unlabeled data. Crucially, previous mask-based efforts in self-supervised learning have often overlooked the spatial interactions among entities, which are essential for constructing accurate representations of pathological entities. To address these challenges, constructing graphs of entities is a promising approach. In addition, the diffusion reconstruction strategy has recently shown superior performance through its random intensity noise addition technique to enhance the robust learned representation. Therefore, we introduce H-MGDM, a novel self-supervised Histopathology image representation learning method through the Dynamic Entity-Masked Graph Diffusion Model. Specifically, we propose to use complementary subgraphs as latent diffusion conditions and self-supervised targets respectively during pre-training. We note that the graph can embed entities' topological relationships and enhance representation. Dynamic conditions and targets can improve pathological fine reconstruction. Our model has conducted pretraining experiments on three large histopathological datasets. The advanced predictive performance and interpretability of H-MGDM are clearly evaluated on comprehensive downstream tasks such as classification and survival analysis on six datasets. Our code will be publicly available at https://github.com/centurion-crawler/H-MGDM.
- Abstract(参考訳): 自然像の特徴と病理像固有の特徴との相違は, 自然像から病理像への事前学習モデルを直接適用し, 移譲することが困難である。
さらに、病理組織学的パッチ画像にアノテーションが欠如しているため、研究者は大量のラベルのないデータから表現を学習するためのマスク再構成のような自己教師付き学習方法を探求するようになった。
重要なことに、自己指導型学習における過去のマスクに基づく取り組みは、しばしば、病理学的な実体の正確な表現を構築するのに欠かせない実体間の空間的相互作用を見落としてきた。
これらの課題に対処するためには、エンティティのグラフを構築することが有望なアプローチである。
さらに, 拡散再構成手法は, 頑健な学習表現を強化するために, ランダム強度雑音付加法により, 性能が向上した。
そこで本稿では,動的Entity-Masked Graph Diffusion Modelによる自己管理型組織像表現学習法であるH-MGDMを紹介する。
具体的には,予備訓練において,相補的な部分グラフを潜時拡散条件として,自己教師対象として用いることを提案する。
グラフはエンティティのトポロジ的関係を埋め込んで表現を強化することができる。
動的条件と標的は、病理学的微細な再構築を改善することができる。
本モデルは3つの大きな病理組織学的データセットの事前学習実験を行った。
H-MGDMの高度な予測性能と解釈性は,6つのデータセットの分類や生存分析などの総合的な下流タスクにおいて明らかに評価される。
私たちのコードはhttps://github.com/centurion-crawler/H-MGDM.comで公開されます。
関連論文リスト
- Unmasking unlearnable models: a classification challenge for biomedical images without visible cues [0.0]
我々は総合的な探索を通じてMGMT状態予測の複雑さを解明する。
我々の発見は、現在のモデルは学習不可能であり、現実世界のアプリケーションを調べるために新しいアーキテクチャを必要とする可能性があることを強調した。
論文 参考訳(メタデータ) (2024-07-29T08:12:42Z) - Mask-guided cross-image attention for zero-shot in-silico histopathologic image generation with a diffusion model [0.10910416614141322]
拡散モデルは、シリコン内画像を生成する最先端のソリューションである。
自然画像の出現伝達拡散モデルが設計されている。
計算病理学、特に腫瘍学では、画像内のどのオブジェクトを前景と背景に分類すべきかを簡単に定義することはできない。
我々は,クラス固有のAdaIN特徴量マッチングを交互に行うために,外観伝達指導を変更することで,拡散安定画像への外観伝達モデルの適用性に寄与する。
論文 参考訳(メタデータ) (2024-07-16T12:36:26Z) - Joint-Embedding Masked Autoencoder for Self-supervised Learning of
Dynamic Functional Connectivity from the Human Brain [18.165807360855435]
グラフニューラルネットワーク(GNN)は、人間の脳ネットワークと表現型を区別するための動的機能接続の学習において、有望であることを示している。
本稿では,計算機ビジョンにおけるJEPA(Joint Embedding Predictive Architecture)からインスピレーションを得た,時空間連成型自動エンコーダ(ST-JEMA)について紹介する。
論文 参考訳(メタデータ) (2024-03-11T04:49:41Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
テキストと画像の拡散モデルは、画像認識の恩恵を受ける大きな可能性を示している。
有望ではあるが、拡散生成画像の教師なし学習に特化した調査は不十分である。
上記フリーアテンションマスクをフル活用することで、カスタマイズされたソリューションを導入する。
論文 参考訳(メタデータ) (2023-08-13T10:07:46Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
我々は,対象地域を排除し,事前訓練の手順を改善する,新たな自己指導型アプローチを開発した。
予測モデルに対してエージェントを訓練することで、下流の分類タスクで抽出した意味的特徴を大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-03-25T19:05:06Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
組織像解析のための教師なし領域適応のための新しい手法を提案する。
特徴空間に画像を埋め込むバックボーンと、ラベルで画像の監視信号をプロパゲートするグラフニューラルネットワーク層に基づいている。
実験では、4つの公開データセット上での最先端のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-08-21T04:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。