CATALOG: A Camera Trap Language-guided Contrastive Learning Model
- URL: http://arxiv.org/abs/2412.10624v1
- Date: Sat, 14 Dec 2024 00:06:37 GMT
- Title: CATALOG: A Camera Trap Language-guided Contrastive Learning Model
- Authors: Julian D. Santamaria, Claudia Isaza, Jhony H. Giraldo,
- Abstract summary: We propose the Camera Trap Language-guided Contrastive Learning (CATALOG) model to address these issues.
Our approach combines multiple FMs to extract visual and textual features from camera-trap data and uses a contrastive loss function to train the model.
We evaluate CATALOG on two benchmark datasets and show that it outperforms previous state-of-the-art methods in camera-trap image recognition.
- Score: 1.77513002450736
- License:
- Abstract: Foundation Models (FMs) have been successful in various computer vision tasks like image classification, object detection and image segmentation. However, these tasks remain challenging when these models are tested on datasets with different distributions from the training dataset, a problem known as domain shift. This is especially problematic for recognizing animal species in camera-trap images where we have variability in factors like lighting, camouflage and occlusions. In this paper, we propose the Camera Trap Language-guided Contrastive Learning (CATALOG) model to address these issues. Our approach combines multiple FMs to extract visual and textual features from camera-trap data and uses a contrastive loss function to train the model. We evaluate CATALOG on two benchmark datasets and show that it outperforms previous state-of-the-art methods in camera-trap image recognition, especially when the training and testing data have different animal species or come from different geographical areas. Our approach demonstrates the potential of using FMs in combination with multi-modal fusion and contrastive learning for addressing domain shifts in camera-trap image recognition. The code of CATALOG is publicly available at https://github.com/Julian075/CATALOG.
Related papers
- The Change You Want to See (Now in 3D) [65.61789642291636]
The goal of this paper is to detect what has changed, if anything, between two "in the wild" images of the same 3D scene.
We contribute a change detection model that is trained entirely on synthetic data and is class-agnostic.
We release a new evaluation dataset consisting of real-world image pairs with human-annotated differences.
arXiv Detail & Related papers (2023-08-21T01:59:45Z) - The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation [21.047026366450197]
We address the problem of few-shot learning for camouflaged object detection and segmentation.
We propose FS-CDIS, a framework to efficiently detect and segment camouflaged instances.
Our proposed method achieves state-of-the-art performance on the newly collected dataset.
arXiv Detail & Related papers (2023-04-15T01:33:14Z) - Choosing an Appropriate Platform and Workflow for Processing Camera Trap
Data using Artificial Intelligence [0.18350044465969417]
Camera traps have transformed how ecologists study wildlife species distributions, activity patterns, and interspecific interactions.
The potential of Artificial Intelligence (AI), specifically Deep Learning (DL), to process camera-trap data has gained considerable attention.
Using DL for these applications involves training algorithms, such as Convolutional Neural Networks (CNNs) to automatically detect objects and classify species.
arXiv Detail & Related papers (2022-02-04T18:13:09Z) - Towards Fine-grained Image Classification with Generative Adversarial
Networks and Facial Landmark Detection [0.0]
We use GAN-based data augmentation to generate extra dataset instances.
We validated our work by evaluating the accuracy of fine-grained image classification on the recent Vision Transformer (ViT) Model.
arXiv Detail & Related papers (2021-08-28T06:32:42Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot image classification aims to utilize pretrained knowledge learned from a large-scale dataset to tackle a series of downstream classification tasks.
We propose COSOC, a novel Few-Shot Learning framework, to automatically figure out foreground objects at both pretraining and evaluation stage.
arXiv Detail & Related papers (2021-07-16T07:46:41Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - DeepI2P: Image-to-Point Cloud Registration via Deep Classification [71.3121124994105]
DeepI2P is a novel approach for cross-modality registration between an image and a point cloud.
Our method estimates the relative rigid transformation between the coordinate frames of the camera and Lidar.
We circumvent the difficulty by converting the registration problem into a classification and inverse camera projection optimization problem.
arXiv Detail & Related papers (2021-04-08T04:27:32Z) - Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for
Unsupervised Person Re-Identification [60.36551512902312]
unsupervised person re-identification (re-ID) aims to learn discriminative models with unlabeled data.
One popular method is to obtain pseudo-label by clustering and use them to optimize the model.
In this paper, we propose a unified framework to solve both problems.
arXiv Detail & Related papers (2021-03-08T09:13:06Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
We develop a framework for automatic detection and recognition of individuals in different patterned species.
We use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images.
We evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species.
arXiv Detail & Related papers (2020-05-06T15:29:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.