論文の概要: Hidden Echoes Survive Training in Audio To Audio Generative Instrument Models
- arxiv url: http://arxiv.org/abs/2412.10649v1
- Date: Sat, 14 Dec 2024 02:36:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:52.640345
- Title: Hidden Echoes Survive Training in Audio To Audio Generative Instrument Models
- Title(参考訳): 音声から音声生成機器モデルにおける隠れエコーの生存訓練
- Authors: Christopher J. Tralie, Matt Amery, Benjamin Douglas, Ian Utz,
- Abstract要約: トレーニングデータに知覚不可能なエコーが隠されている場合、様々なオーディオ・オーディオアーキテクチャーがこれらのエコーを出力に再現することを示す。
我々は、エコーが微調整されたモデルに変化し、混合/脱混合に耐え、訓練中にピッチシフト増強に耐えることを示した。
- 参考スコア(独自算出の注目度): 0.5999777817331315
- License:
- Abstract: As generative techniques pervade the audio domain, there has been increasing interest in tracing back through these complicated models to understand how they draw on their training data to synthesize new examples, both to ensure that they use properly licensed data and also to elucidate their black box behavior. In this paper, we show that if imperceptible echoes are hidden in the training data, a wide variety of audio to audio architectures (differentiable digital signal processing (DDSP), Realtime Audio Variational autoEncoder (RAVE), and ``Dance Diffusion'') will reproduce these echoes in their outputs. Hiding a single echo is particularly robust across all architectures, but we also show promising results hiding longer time spread echo patterns for an increased information capacity. We conclude by showing that echoes make their way into fine tuned models, that they survive mixing/demixing, and that they survive pitch shift augmentation during training. Hence, this simple, classical idea in watermarking shows significant promise for tagging generative audio models.
- Abstract(参考訳): 生成技術がオーディオ領域に浸透するにつれ、これらの複雑なモデルをトレースして、トレーニングデータにどのように描画して新しいサンプルを合成するかを理解することへの関心が高まっている。
本稿では、学習データに知覚不能エコーが隠されている場合、様々なオーディオ・オーディオアーキテクチャ(微分可能デジタル信号処理(DDSP)、リアルタイムオーディオ変分自動エンコーダ(RAVE)、 'Dance Diffusion')がこれらのエコーを出力に再現することを示す。
単一のエコーを隠蔽することは、すべてのアーキテクチャにおいて特に堅牢であるが、情報容量を増やすために、より長い時間間隔のエコーパターンを隠蔽する有望な結果を示す。
我々は、エコーが微調整されたモデルに変化し、混合/脱混合に耐え、訓練中にピッチシフト増強に耐えることを示した。
したがって、ウォーターマーキングにおけるこの単純で古典的なアイデアは、生成的オーディオモデルにタグ付けする大きな可能性を示している。
関連論文リスト
- Both Ears Wide Open: Towards Language-Driven Spatial Audio Generation [32.24603883810094]
ステレオオーディオを空間的コンテキストで制御することは、高いデータコストと不安定な生成モデルのために依然として困難である。
まず, 大規模・シミュレーションベース・GPT支援型データセットBEWO-1Mを構築し, 移動・複数音源を含む豊富な音環境と記述を行った。
空間誘導を利用して,テキストや画像から没入型かつ制御可能な空間オーディオを生成する。
論文 参考訳(メタデータ) (2024-10-14T16:18:29Z) - Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization [70.13218512896032]
テキストプロンプトから音声を生成することは、音楽や映画産業におけるそのようなプロセスの重要な側面である。
我々の仮説は、これらのオーディオ生成の側面が、限られたデータの存在下でのオーディオ生成性能をどのように改善するかに焦点を当てている。
我々は、各プロンプトが勝者の音声出力と、拡散モデルが学習するための敗者音声出力を持つ選好データセットを合成的に作成する。
論文 参考訳(メタデータ) (2024-04-15T17:31:22Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
深層生成モデルは、様々な種類の表現で条件付けられた高忠実度オーディオを生成することができる。
これらのモデルは、条件付けに欠陥がある場合や不完全な場合、可聴アーチファクトを生成する傾向がある。
低ビットレート離散表現から任意の種類のオーディオモダリティを生成する高忠実度マルチバンド拡散ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T22:14:29Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
音響マッチングは、ターゲットの音響環境に録音されたかのように、音声クリップを再合成することを目的としている。
そこで本研究では,対象のシーン画像と音声のみを含む,視覚的音響マッチングのための自己教師型アプローチを提案する。
提案手法は,条件付きGANフレームワークと新しいメトリクスを用いて,室内音響をアンタングル化し,音をターゲット環境に再合成する方法を共同で学習する。
論文 参考訳(メタデータ) (2023-07-27T17:59:59Z) - Anomalous Sound Detection using Audio Representation with Machine ID
based Contrastive Learning Pretraining [52.191658157204856]
コントラスト学習を用いて、各音声サンプルではなく、各機械IDの音声表現を洗練する。
提案手法では、コントラスト学習を用いて音声表現モデルを事前学習する。
実験の結果,本手法はコントラスト学習や自己教師型分類を用いて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-07T11:08:31Z) - Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion
Models [65.18102159618631]
マルチモーダル生成モデリングは、テキスト・ツー・イメージとテキスト・ツー・ビデオ生成においてマイルストーンを生み出した。
高品質のテキストオーディオペアを備えた大規模データセットの欠如、長期連続的なオーディオデータのモデリングの複雑さ、という2つの主な理由から、オーディオへの適用は依然として遅れている。
本稿では,これらのギャップに対処する急激な拡散モデルを用いたMake-An-Audioを提案する。
論文 参考訳(メタデータ) (2023-01-30T04:44:34Z) - BEATs: Audio Pre-Training with Acoustic Tokenizers [77.8510930885778]
自己教師付き学習(SSL)は、ここ数年、言語、ビジョン、スピーチ、オーディオドメインで目撃されてきた。
本稿では、音声変換器から双方向表現を学習するための反復型オーディオ事前学習フレームワークBEATを提案する。
最初のイテレーションでは、ランダムプロジェクションを音響トークンとして使用し、マスクとラベル予測の方法でオーディオSSLモデルをトレーニングする。
そこで,本研究では,事前学習あるいは微調整した音声SSLモデルから意味知識を抽出することにより,次のイテレーションのための音響トークン化装置を訓練する。
論文 参考訳(メタデータ) (2022-12-18T10:41:55Z) - BYOL-S: Learning Self-supervised Speech Representations by Bootstrapping [19.071463356974387]
この研究は、ブートストラップによる自己教師型学習に基づく既存の手法を拡張し、様々なエンコーダアーキテクチャを提案し、異なる事前学習データセットを使用することの効果を探る。
本稿では,手工芸とデータ駆動型学習音声機能を組み合わせたハイブリッド音声表現を提案する。
提案したすべての表現は、聴覚シーン分類とタイムスタンプ検出タスクのためのHEAR NeurIPS 2021チャレンジで評価された。
論文 参考訳(メタデータ) (2022-06-24T02:26:40Z) - Data Augmentation based Consistency Contrastive Pre-training for
Automatic Speech Recognition [18.303072203996347]
自動音声認識(ASR)タスクにおいて、自己教師付き音響事前学習は驚くべき結果を得た。
音響事前学習法の多くは、コントラスト学習を用いて音響表現を学習する。
本稿では,音声事前学習のためのデータ拡張を利用して,新しいコントラスト学習法(CCL)を設計する。
論文 参考訳(メタデータ) (2021-12-23T13:23:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。