論文の概要: VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2412.10704v2
- Date: Tue, 11 Feb 2025 07:05:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 17:19:39.316080
- Title: VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation
- Title(参考訳): VisDoM:マルチモーダル検索拡張生成を用いたビジュアルリッチ要素を用いたマルチドキュメントQA
- Authors: Manan Suri, Puneet Mathur, Franck Dernoncourt, Kanika Goswami, Ryan A. Rossi, Dinesh Manocha,
- Abstract要約: 本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
- 参考スコア(独自算出の注目度): 100.06122876025063
- License:
- Abstract: Understanding information from a collection of multiple documents, particularly those with visually rich elements, is important for document-grounded question answering. This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings with rich multimodal content, including tables, charts, and presentation slides. We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG, combining robust visual retrieval capabilities with sophisticated linguistic reasoning. VisDoMRAG employs a multi-step reasoning process encompassing evidence curation and chain-of-thought reasoning for concurrent textual and visual RAG pipelines. A key novelty of VisDoMRAG is its consistency-constrained modality fusion mechanism, which aligns the reasoning processes across modalities at inference time to produce a coherent final answer. This leads to enhanced accuracy in scenarios where critical information is distributed across modalities and improved answer verifiability through implicit context attribution. Through extensive experiments involving open-source and proprietary large language models, we benchmark state-of-the-art document QA methods on VisDoMBench. Extensive results show that VisDoMRAG outperforms unimodal and long-context LLM baselines for end-to-end multimodal document QA by 12-20%.
- Abstract(参考訳): 複数の文書の集合、特に視覚的に豊かな要素の集合からの情報を理解することは、文書による質問応答において重要である。
本稿では、テーブル、チャート、プレゼンテーションスライドを含むリッチなマルチモーダルコンテンツを備えたマルチドキュメント設定でQAシステムを評価するために設計された最初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚的およびテキスト的RAGを同時に利用し、堅牢な視覚検索機能と洗練された言語学的推論を組み合わせた、新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
VisDoMRAGは、エビデンスキュレーションを含む多段階の推論プロセスを採用し、同時にテキストとビジュアルのRAGパイプラインをチェーン・オブ・プリーティングする。
VisDoMRAGの重要な新規性は、一貫性に制約のあるモジュラリティ融合機構である。
これにより、重要な情報がモダリティに分散するシナリオにおける精度が向上し、暗黙の文脈属性による回答の妥当性が向上する。
オープンソースおよびプロプライエタリな大規模言語モデルを含む広範な実験を通じて、我々はVisDoMBench上で最先端の文書QA手法をベンチマークする。
その結果, VisDoMRAGは, エンド・ツー・エンドのマルチモーダル文書QAにおいて, 単文および長文のLLMベースラインを12~20%向上させることがわかった。
関連論文リスト
- CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
本稿では,新しいマルチモーダル検索フレームワークであるMLLM (CUE-M) について述べる。
マルチモーダルなQ&Aデータセットとパブリックセーフティベンチマークによる評価は、CUE-Mが精度、知識統合、安全性のベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-11-19T07:16:48Z) - M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding [63.33447665725129]
M3DocRAGは、様々な文書コンテキストに柔軟に対応する新しいマルチモーダルRAGフレームワークである。
M3DocRAGは視覚情報を保存しながら、単一の文書や多数の文書を効率的に処理できる。
M3DocVQAはオープンドメインDocVQAを3,000以上のPDFドキュメントと4万以上のページで評価するための新しいベンチマークである。
論文 参考訳(メタデータ) (2024-11-07T18:29:38Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented Generation (RAG) は、大規模言語モデルが外部知識ソースを生成に活用できる効果的な手法である。
本稿では,視覚言語モデル(VLM)に基づくRAGパイプラインを構築することで,この問題に対処するVisRAGを紹介する。
このパイプラインでは、まず文書を解析してテキストを得る代わりに、VLMを画像として直接埋め込んで、VLMの生成を強化する。
論文 参考訳(メタデータ) (2024-10-14T15:04:18Z) - Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization [49.08348604716746]
Multimodal Summarization with Multimodal Output (MSMO) は、テキストと関連する画像の両方を統合するマルチモーダル要約を作成することを目的としている。
本稿では,Entity-Guided Multimodal Summarization Model (EGMS)を提案する。
我々のモデルは,BART上に構築され,共有重み付きデュアルマルチモーダルエンコーダを用いて,テキスト画像とエンティティ画像情報を並列に処理する。
論文 参考訳(メタデータ) (2024-08-06T12:45:56Z) - An Interactive Multi-modal Query Answering System with Retrieval-Augmented Large Language Models [21.892975397847316]
本稿では,新たに開発したマルチモーダル検索フレームワークとナビゲーショングラフインデックスを用いて,対話型マルチモーダルクエリ・アンサーリング(MQA)システムを提案する。
MQAの特筆すべき点は、異なるモダリティの重要性を評価するために、コントラスト学習を利用することである。
本システムは,計算プルーニング技術を用いて改良した,先進的なナビゲーショングラフインデックスによる効率的な検索を実現する。
論文 参考訳(メタデータ) (2024-07-05T02:01:49Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering [13.625303311724757]
文書質問回答(QA)は、視覚に富む文書(VRD)を理解する上での課題を提示する
我々は,複数のページとマルチモーダル情報検索を含む研究雑誌記事に適したPDF-MVQAを提案する。
論文 参考訳(メタデータ) (2024-04-19T09:00:05Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Netは、FS-FGアクション認識のためのマッチングベースのフレームワークである。
textitmulti-view エンコーディング、textitmulti-view matching、textitmulti-view fusion を組み込んで、埋め込みエンコーディング、類似性マッチング、意思決定を容易にする。
説明可能な可視化と実験結果により,M$3$Netの微細な動作の詳細を捉える上での優位性が示された。
論文 参考訳(メタデータ) (2023-08-06T09:15:14Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
テキスト関連視覚タスクにおいて, GPT4V や Gemini などの大規模マルチモーダルモデルの包括的評価を行った。
OCRBenchには29のデータセットがあり、最も包括的なOCR評価ベンチマークが利用できる。
論文 参考訳(メタデータ) (2023-05-13T11:28:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。