論文の概要: Audio-based Anomaly Detection in Industrial Machines Using Deep One-Class Support Vector Data Description
- arxiv url: http://arxiv.org/abs/2412.10792v1
- Date: Sat, 14 Dec 2024 11:05:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:13.092618
- Title: Audio-based Anomaly Detection in Industrial Machines Using Deep One-Class Support Vector Data Description
- Title(参考訳): ディープワンクラス支援ベクトルデータ記述を用いた産業機械の音声による異常検出
- Authors: Sertac Kilickaya, Mete Ahishali, Cansu Celebioglu, Fahad Sohrab, Levent Eren, Turker Ince, Murat Askar, Moncef Gabbouj,
- Abstract要約: マイクロフォンは、広く使われているコンディションモニタリングセンサーに代わる安価な代替品を提供する。
我々は,異なるマシンタイプおよび故障状況における異常検出性能を評価する。
2のサブ空間を持つディープSVDD法は、より優れた異常検出性能を提供する。
- 参考スコア(独自算出の注目度): 11.51453226034072
- License:
- Abstract: The frequent breakdowns and malfunctions of industrial equipment have driven increasing interest in utilizing cost-effective and easy-to-deploy sensors, such as microphones, for effective condition monitoring of machinery. Microphones offer a low-cost alternative to widely used condition monitoring sensors with their high bandwidth and capability to detect subtle anomalies that other sensors might have less sensitivity. In this study, we investigate malfunctioning industrial machines to evaluate and compare anomaly detection performance across different machine types and fault conditions. Log-Mel spectrograms of machinery sound are used as input, and the performance is evaluated using the area under the curve (AUC) score for two different methods: baseline dense autoencoder (AE) and one-class deep Support Vector Data Description (deep SVDD) with different subspace dimensions. Our results over the MIMII sound dataset demonstrate that the deep SVDD method with a subspace dimension of 2 provides superior anomaly detection performance, achieving average AUC scores of 0.84, 0.80, and 0.69 for 6 dB, 0 dB, and -6 dB signal-to-noise ratios (SNRs), respectively, compared to 0.82, 0.72, and 0.64 for the baseline model. Moreover, deep SVDD requires 7.4 times fewer trainable parameters than the baseline dense AE, emphasizing its advantage in both effectiveness and computational efficiency.
- Abstract(参考訳): 産業機器の故障や故障が頻発し、機械の効率的な状態監視に費用対効果が高く、マイクロフォンなどの使い勝手の良いセンサーの利用への関心が高まっている。
マイクロフォンは、広範に使われているコンディションモニタリングセンサーに代わる安価な代替品であり、その高帯域幅と、他のセンサーの感度が低い微妙な異常を検出する能力がある。
本研究では, 異機種間における異常検出性能の評価と比較を行うために, 産業機械の故障について検討した。
機械音の対数メルスペクトルを入力として, ベースライン高密度オートエンコーダ (AE) と, サブスペース次元の異なる1クラスのディープサポートベクトルデータ記述 (ディープSVDD) の2つの方法で, 曲線 (AUC) の下の面積を用いて評価した。
MIMII 音声データセットを用いた結果から,平均 AUC スコア 0.84, 0.80, 0.69 の6dB, 0 dB と -6dB の信号-雑音比 (SNRs) を,それぞれ0.82, 0.72, 0.64 のベースラインモデルと比較すると, 2 次元の深部SVDD 法の方が優れた異常検出性能が得られた。
さらに、ディープSVDDはベースライン密度の高いAEの7.4倍のトレーニング可能なパラメータを必要とし、有効性と計算効率の両方においてその利点を強調している。
関連論文リスト
- Unsupervised CP-UNet Framework for Denoising DAS Data with Decay Noise [13.466125373185399]
分散音響センサ(DAS)技術は光ファイバーケーブルを利用して音響信号を検出する。
DASは、ジオフォンよりも低い信号対雑音比(S/N)を示す。
これにより、S/Nの低減は、反転と解釈を含むデータ解析に悪影響を及ぼす。
論文 参考訳(メタデータ) (2025-02-19T03:09:49Z) - Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
unsupervised out-of-distribution (U-OOD) は、未表示のin-distriion(ID)データのみに基づいて訓練された検出器でデータサンプルを識別することである。
近年の研究は、DGMに基づく様々な検出器を開発し、可能性を超えて移動している。
本研究では,各方向,特にポストホック前とデータセットエントロピー・ミューチュアルキャリブレーションの2つの手法を適用した。
実験の結果、結果が新しい最先端のU-OOD検出器になる可能性が示された。
論文 参考訳(メタデータ) (2024-09-05T02:58:13Z) - Exploring Sound vs Vibration for Robust Fault Detection on Rotating
Machinery [13.480792901281047]
本研究は, カタール大学Dual-Machine Bearing Fault Benchmarkデータセット(QU-DMBF)を提案する。
我々は,多数の設置条件と運転条件により,振動に基づく故障検出の大きな限界と欠点に焦点をあてる。
幅広い実験結果から, 音による断層検出法は, 振動による検出法よりもかなり頑健であることがわかった。
論文 参考訳(メタデータ) (2023-12-17T15:27:32Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Cutting Through the Noise: An Empirical Comparison of Psychoacoustic and
Envelope-based Features for Machinery Fault Detection [6.9260317236159]
本稿では,Lenze Production background-noise (LPBN) 実世界のデータセットと,車載モータの終端点検のためのARAIシステムについて述べる。
アコースティックアレイは、マイナーな故障、主要な故障、または健康なモータからデータを取得するために使用される。
我々の知る限りでは、私たちは初めて、時間変化の心理音響的特徴を断層検出に適用しました。
論文 参考訳(メタデータ) (2022-11-03T10:56:17Z) - Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace
Based on Denoising Convolutional Autoencoder and Bidirectional Long
Short-Term Memory [0.0]
提案手法は,デノナイズド・コンボリューション・オートエンコーダ (DCAE) と双方向長短期メモリ (BiLSTM) を組み合わせたものである。
提案手法は,5dBから15dBまでの入力SNRレベルが異なる雑音のOTDR信号に適用する。
BiLSTMは、ノイズOTDR信号で訓練された同じモデルの性能と比較して、13.74%の改善により96.7%の高い検出精度と診断精度を達成している。
論文 参考訳(メタデータ) (2022-03-19T08:37:40Z) - Practical Recommendations for the Design of Automatic Fault Detection
Algorithms Based on Experiments with Field Monitoring Data [0.0]
自動故障検出(AFD)は太陽光発電システムポートフォリオの運用と保守を最適化するための重要な技術である。
本研究では,ドイツに設置した80基の屋上型PVシステムにおいて58ヶ月以上にわたって収集されたモニタリングデータを用いて,実運転条件下で一連のAFDアルゴリズムを検証した。
その結果、この種のAFDアルゴリズムは、90%以上の特異性を持つエネルギー損失の82.8%を検出できる可能性が示された。
論文 参考訳(メタデータ) (2022-03-02T13:43:17Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。