論文の概要: Rethinking Chain-of-Thought from the Perspective of Self-Training
- arxiv url: http://arxiv.org/abs/2412.10827v1
- Date: Sat, 14 Dec 2024 13:12:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:02:10.696438
- Title: Rethinking Chain-of-Thought from the Perspective of Self-Training
- Title(参考訳): 自己学習の観点からの思考の連鎖の再考
- Authors: Zongqian Wu, Baoduo Xu, Ruochen Cui, Mengmeng Zhan, Xiaofeng Zhu, Lei Feng,
- Abstract要約: 大型言語モデル(LLM)における潜在能力を活性化するための効果的なアプローチとして、チェーン・オブ・シント推論(CoT)が登場している。
本稿では,CoTと自己学習の関係について考察し,自己学習による洞察がCoTのパフォーマンスに与える影響を実証する。
- 参考スコア(独自算出の注目度): 10.722453877596998
- License:
- Abstract: Chain-of-thought (CoT) reasoning has emerged as an effective approach for activating latent capabilities in large language models (LLMs). We observe that CoT shares significant similarities with self-training in terms of their learning processes. Motivated by these parallels, this paper explores the underlying relationship between CoT and self-training, demonstrating how insights from self-training can enhance CoT performance. Specifically, our study first reveals that CoT, like self-training, follows the principle of semantic entropy minimization. Leveraging this insight, we propose a novel CoT framework that incorporates two key components: (i) a task-specific prompt module designed to guide LLMs in generating high-quality initial reasoning processes, and (ii) an adaptive reasoning iteration module for progressively refining the reasoning process.
- Abstract(参考訳): CoT推論は、大規模言語モデル(LLM)における潜在能力を活性化するための効果的なアプローチとして現れている。
我々はCoTが学習過程において自己学習と大きな類似点を持っていることを観察した。
本稿では,CoTと自己学習の関係を考察し,自己学習から得られる洞察がCoTのパフォーマンスをいかに向上させるかを示す。
特に,本研究では,CoTが自己学習と同様,意味エントロピー最小化の原則に従うことを最初に明らかにした。
この洞察を生かして、2つの重要なコンポーネントを組み込んだ新しいCoTフレームワークを提案する。
i) 高品質な初期推論プロセスの生成においてLLMを誘導するタスク特化プロンプトモジュール
(ii) 段階的に推論プロセスを洗練するための適応推論反復モジュール。
関連論文リスト
- Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
我々は,情報理論レンズを用いて,大規模言語モデル(LLM)におけるChain-of-Thought(CoT)推論を定式化する。
具体的には、各推論ステップにおける情報ゲインの定量化を行い、障害モードの識別を可能にする。
提案手法の有効性を,玩具およびGSM-8Kデータに対する広範囲な実験により実証し,既存の結果に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-11-18T19:14:36Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
大型言語モデル(LLM)の性能向上のための有望なアプローチとして、Chain-of-Thought(CoT)推論が登場した。
本稿では,これらの課題に対処するための新しい推論境界フレームワーク(RBF)を提案する。
論文 参考訳(メタデータ) (2024-10-08T05:26:28Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - On the Hardness of Faithful Chain-of-Thought Reasoning in Large Language Models [25.029579061612456]
大規模言語モデル(LLM)は、医療などの重要な領域における現実世界のアプリケーションにますます採用されている。
これらのモデルによって生成されたCoT(Chain-of-Thought)推論が、その基盤となる振る舞いを忠実に捉えることが重要である。
論文 参考訳(メタデータ) (2024-06-15T13:16:44Z) - AS-ES Learning: Towards Efficient CoT Learning in Small Models [35.225382243612174]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)において重要な出現能力として機能する
本稿では,CoT内固有の情報を反復生成に活用したAS-ES学習手法を提案する。
実験により,データ拡張やモデル自体の変更を伴わずに,MWPやPET要約などのCoT集約タスクにおけるSeq2seqトレーニングを超越した手法が得られた。
論文 参考訳(メタデータ) (2024-03-04T12:13:59Z) - How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning [44.02173413922695]
理解の欠如は、CoT(Chain-of-Thought)の促進を促進するモデルの内部メカニズムに大きく影響する。
本研究では,CoT推論を一視点から示す大規模言語モデル内のサブ構造について検討する。
論文 参考訳(メタデータ) (2024-02-28T13:14:20Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - CoopInit: Initializing Generative Adversarial Networks via Cooperative
Learning [50.90384817689249]
CoopInitは、協力的な学習ベースの戦略で、GANにとって良い出発点を素早く学べる。
本稿では,画像生成における提案手法の有効性を示す。
論文 参考訳(メタデータ) (2023-03-21T07:49:32Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
CoT(Chain-of-Thought)の促進により,大規模言語モデル(LLM)の多段階推論能力が劇的に向上する
無効な実演でもCoT推論が可能であることを示す。
論文 参考訳(メタデータ) (2022-12-20T05:20:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。