論文の概要: Improving Graph Neural Networks via Adversarial Robustness Evaluation
- arxiv url: http://arxiv.org/abs/2412.10850v1
- Date: Sat, 14 Dec 2024 14:47:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:25.709303
- Title: Improving Graph Neural Networks via Adversarial Robustness Evaluation
- Title(参考訳): 逆ロバスト性評価によるグラフニューラルネットワークの改良
- Authors: Yongyu Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、ニューラルネットワークアーキテクチャの最も強力なタイプの1つである。
しかし、GNNはグラフ構造のノイズに弱い。
本稿では,雑音の影響を受けない少数のロバストノードを選択するために,対向ロバストネス評価法を提案する。
- 参考スコア(独自算出の注目度): 2.1937382384136637
- License:
- Abstract: Graph Neural Networks (GNNs) are currently one of the most powerful types of neural network architectures. Their advantage lies in the ability to leverage both the graph topology, which represents the relationships between samples, and the features of the samples themselves. However, the given graph topology often contains noisy edges, and GNNs are vulnerable to noise in the graph structure. This issue remains unresolved. In this paper, we propose using adversarial robustness evaluation to select a small subset of robust nodes that are less affected by noise. We then only feed the features of these robust nodes, along with the KNN graph constructed from these nodes, into the GNN for classification. Additionally, we compute the centroids for each class. For the remaining non-robust nodes, we assign them to the class whose centroid is closest to them. Experimental results show that this method significantly improves the accuracy of GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は現在、最も強力なタイプのニューラルネットワークアーキテクチャの1つである。
その利点は、サンプル間の関係を表すグラフトポロジと、サンプル自体の特徴の両方を活用する能力である。
しかし、与えられたグラフトポロジーはしばしばノイズの多いエッジを含み、GNNはグラフ構造のノイズに弱い。
この問題は未解決のままである。
本稿では,雑音の影響を受けない少数のロバストノードを選択するために,対向ロバストネス評価法を提案する。
そして、これらの頑健なノードの特徴と、これらのノードから構築されたKNNグラフを、分類のためにGNNにのみ供給する。
さらに、各クラスのセントロイドを計算する。
残りの非ロバストノードに対しては、セントロイドがそれらに最も近いクラスにそれらを割り当てる。
実験結果から,本手法はGNNの精度を大幅に向上させることが示された。
関連論文リスト
- GNN-MultiFix: Addressing the pitfalls for GNNs for multi-label node classification [1.857645719601748]
グラフニューラルネットワーク(GNN)は、グラフデータの表現を学習するための強力なモデルとして登場した。
我々は,最も表現力の高いGNNでさえ,ノード属性や明示的なラベル情報を入力として使用せずに学習できないことを示す。
本稿では,ノードの機能,ラベル,位置情報を統合したGNN-MultiFixという簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-21T12:59:39Z) - Classifying Nodes in Graphs without GNNs [50.311528896010785]
本稿では,完全GNNフリーなノード分類手法を提案する。
本手法は, 滑らかさ制約, 擬似ラベル反復, 近傍ラベルヒストグラムの3つの主要成分からなる。
論文 参考訳(メタデータ) (2024-02-08T18:59:30Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Self-attention Dual Embedding for Graphs with Heterophily [6.803108335002346]
多くの実世界のグラフはヘテロ親和性があり、標準のGNNを用いた分類精度ははるかに低い。
ヘテロ親和性グラフとホモ親和性グラフの両方に有効である新しいGNNを設計する。
我々は,数千から数百万のノードを含む実世界のグラフ上でアルゴリズムを評価し,最先端の結果が得られたことを示す。
論文 参考訳(メタデータ) (2023-05-28T09:38:28Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural
Networks [28.92347073786722]
グラフニューラルネットワーク(GNN)はノード分類の最先端性能を達成した。
本稿では,ノード間の類似性をエンコードするために埋め込み空間を構築する新しいフレームワークであるgraphsmoteを提案する。
この空間で新しいサンプルが合成され、真正性が保証される。
論文 参考訳(メタデータ) (2021-03-16T03:23:55Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。