論文の概要: DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2412.10859v1
- Date: Sat, 14 Dec 2024 15:15:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:25.270969
- Title: DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting
- Title(参考訳): DUET:デュアルクラスタリングによる多変量時系列予測
- Authors: Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu, Bin Yang,
- Abstract要約: 我々は,時空間とチャネル次元のアンダーラインクラスタリングを導入する textbfDUET という一般的なフレームワークを提案する。
また,新しいChannel-Soft-Clustering戦略を導入し,Channel Clustering Moduleを設計する。
最後に、DUETはTCMとCCMを組み合わせることで、時間次元とチャネル次元の両方を組み込む。
- 参考スコア(独自算出の注目度): 13.05900224897486
- License:
- Abstract: Multivariate time series forecasting is crucial for various applications, such as financial investment, energy management, weather forecasting, and traffic optimization. However, accurate forecasting is challenging due to two main factors. First, real-world time series often show heterogeneous temporal patterns caused by distribution shifts over time. Second, correlations among channels are complex and intertwined, making it hard to model the interactions among channels precisely and flexibly. In this study, we address these challenges by proposing a general framework called \textbf{DUET}, which introduces \underline{DU}al clustering on the temporal and channel dimensions to \underline{E}nhance multivariate \underline{T}ime series forecasting. First, we design a Temporal Clustering Module (TCM) that clusters time series into fine-grained distributions to handle heterogeneous temporal patterns. For different distribution clusters, we design various pattern extractors to capture their intrinsic temporal patterns, thus modeling the heterogeneity. Second, we introduce a novel Channel-Soft-Clustering strategy and design a Channel Clustering Module (CCM), which captures the relationships among channels in the frequency domain through metric learning and applies sparsification to mitigate the adverse effects of noisy channels. Finally, DUET combines TCM and CCM to incorporate both the temporal and channel dimensions. Extensive experiments on 25 real-world datasets from 10 application domains, demonstrate the state-of-the-art performance of DUET.
- Abstract(参考訳): 多変量時系列予測は、金融投資、エネルギー管理、天気予報、交通最適化など、様々な用途に不可欠である。
しかし,2つの要因から正確な予測は困難である。
第1に、実世界の時系列は、時間とともに分布の変化によって引き起こされる異質な時間パターンを示すことが多い。
第二に、チャネル間の相関は複雑で絡み合っており、チャネル間の相互作用を正確にかつ柔軟にモデル化することは困難である。
本研究では, 時間・チャネル次元に \underline{DU}al clustering を導入し, 時間・チャネル次元に \underline{E}nhance multivariate \underline{T}ime series forecasting を導入し, これらの課題に対処する。
まず、時系列を細粒度分布にクラスタリングし、異種時間パターンを扱う時間クラスタリングモジュール(TCM)を設計する。
異なる分布クラスタに対して、本質的な時間的パターンをキャプチャする様々なパターン抽出器を設計し、不均一性をモデル化する。
第2に,新しいチャネル・ソフト・クラスタリング戦略を導入し,チャネル・クラスタリング・モジュール (CCM) を設計し,メトリック・ラーニングにより周波数領域内のチャネル間の関係を捕捉し,ノイズチャネルの悪影響を軽減するためにスペーシフィケーションを適用した。
最後に、DUETはTCMとCCMを組み合わせることで、時間次元とチャネル次元の両方を組み込む。
10のアプリケーションドメインから25の現実世界のデータセットに対する大規模な実験は、DUETの最先端のパフォーマンスを実証している。
関連論文リスト
- DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTSは、一般的な時系列予測において、不整合チャネル進化パターンをモデル化するための調整されたフレームワークである。
本稿では,予測器の状態と入力系列の特性の両方に応じて適応的にルーティング信号を生成する,新しいフォアキャスタ・アウェアゲート(FAG)モジュールを提案する。
論文 参考訳(メタデータ) (2024-10-30T12:46:14Z) - SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion [59.96233305733875]
時系列予測は、金融、交通管理、エネルギー、医療など様々な分野で重要な役割を果たしている。
いくつかの方法は、注意やミキサーのようなメカニズムを利用して、チャネル相関をキャプチャすることでこの問題に対処する。
本稿では,効率的なモデルであるSOFTS(Series-cOre Fused Time Series forecaster)を提案する。
論文 参考訳(メタデータ) (2024-04-22T14:06:35Z) - From Similarity to Superiority: Channel Clustering for Time Series Forecasting [61.96777031937871]
CCM(Channel Clustering Module)を開発した。
CCMは、固有の類似性を特徴とするチャネルを動的にグループ化し、個々のチャネルのアイデンティティの代わりにクラスタ情報を活用する。
CCMは、CIモデルとCDモデルのパフォーマンスを、それぞれ長期および短期の予測において平均利率2.4%と7.2%で向上させることができる。
論文 参考訳(メタデータ) (2024-03-31T02:46:27Z) - MCformer: Multivariate Time Series Forecasting with Mixed-Channels Transformer [8.329947472853029]
Channel Independence(CI)戦略は、すべてのチャネルを単一のチャネルとして扱い、データセットを拡張する。
Mixed Channels戦略は、CI戦略のデータ拡張アドバンテージと、チャネル間の相関を忘れないように対処する機能を組み合わせたものだ。
モデルは特定の数のチャネルをブレンドし、チャネル間の相関情報を効果的に取得するための注意機構を活用する。
論文 参考訳(メタデータ) (2024-03-14T09:43:07Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal
and Channel Mixing [18.058617044421293]
本稿では,時系列予測の性能に対する注意機構の寄与と欠陥について検討する。
MTS-Mixersを提案する。これは2つの分解されたモジュールを用いて時間的およびチャネル的依存関係をキャプチャする。
いくつかの実世界のデータセットによる実験結果から、MTS-Mixersは既存のTransformerベースのモデルよりも高い効率で性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-02-09T08:52:49Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。