Easy Begun is Half Done: Spatial-Temporal Graph Modeling with
ST-Curriculum Dropout
- URL: http://arxiv.org/abs/2211.15182v1
- Date: Mon, 28 Nov 2022 09:47:46 GMT
- Title: Easy Begun is Half Done: Spatial-Temporal Graph Modeling with
ST-Curriculum Dropout
- Authors: Hongjun Wang, Jiyuan Chen, Tong Pan, Zipei Fan, Boyuan Zhang, Renhe
Jiang, Lingyu Zhang, Yi Xie, Zhongyi Wang, Xuan Song
- Abstract summary: We propose ST-Curriculum Dropout, a novel and easy-to-implement strategy for spatial-temporal graph modeling.
We evaluate the learning difficulty of each node in high-level feature space and drop those difficult ones out to ensure the model only needs to handle fundamental ST relations.
Our strategy can be applied to any canonical deep learning architecture without extra trainable parameters.
- Score: 8.924689054841524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial-temporal (ST) graph modeling, such as traffic speed forecasting and
taxi demand prediction, is an important task in deep learning area. However,
for the nodes in graph, their ST patterns can vary greatly in difficulties for
modeling, owning to the heterogeneous nature of ST data. We argue that
unveiling the nodes to the model in a meaningful order, from easy to complex,
can provide performance improvements over traditional training procedure. The
idea has its root in Curriculum Learning which suggests in the early stage of
training models can be sensitive to noise and difficult samples. In this paper,
we propose ST-Curriculum Dropout, a novel and easy-to-implement strategy for
spatial-temporal graph modeling. Specifically, we evaluate the learning
difficulty of each node in high-level feature space and drop those difficult
ones out to ensure the model only needs to handle fundamental ST relations at
the beginning, before gradually moving to hard ones. Our strategy can be
applied to any canonical deep learning architecture without extra trainable
parameters, and extensive experiments on a wide range of datasets are conducted
to illustrate that, by controlling the difficulty level of ST relations as the
training progresses, the model is able to capture better representation of the
data and thus yields better generalization.
Related papers
- ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data [59.78770412981611]
In real-world applications, most nodes may not possess any available temporal data during training.
We propose a principled framework named ST-FiT to handle this problem.
arXiv Detail & Related papers (2024-12-14T17:51:29Z) - EasyST: A Simple Framework for Spatio-Temporal Prediction [18.291117879544945]
We propose a simple framework for spatial-temporal prediction - EasyST paradigm.
It learns lightweight and robust Multi-Layer Perceptrons (MLPs) generalization by distilling knowledge from complex-temporal GNNs.
EasyST surpasses state-of-the-art approaches in terms of efficiency and accuracy.
arXiv Detail & Related papers (2024-09-10T11:40:01Z) - Generalizable Implicit Neural Representation As a Universal Spatiotemporal Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-06-13T02:03:22Z) - EfficientTrain++: Generalized Curriculum Learning for Efficient Visual Backbone Training [79.96741042766524]
We reformulate the training curriculum as a soft-selection function.
We show that exposing the contents of natural images can be readily achieved by the intensity of data augmentation.
The resulting method, EfficientTrain++, is simple, general, yet surprisingly effective.
arXiv Detail & Related papers (2024-05-14T17:00:43Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
We propose a new spatial-temporal graph learning model (GraphST) for enabling effective self-supervised learning.
Our proposed model is an adversarial contrastive learning paradigm that automates the distillation of crucial multi-view self-supervised information.
We demonstrate the superiority of our proposed GraphST method in various spatial-temporal prediction tasks on real-life datasets.
arXiv Detail & Related papers (2023-06-19T03:09:35Z) - Style Curriculum Learning for Robust Medical Image Segmentation [62.02435329931057]
Deep segmentation models often degrade due to distribution shifts in image intensities between the training and test data sets.
We propose a novel framework to ensure robust segmentation in the presence of such distribution shifts.
arXiv Detail & Related papers (2021-08-01T08:56:24Z) - The World as a Graph: Improving El Ni\~no Forecasts with Graph Neural
Networks [0.00916150060695978]
We propose the first application of graph neural networks to seasonal forecasting.
Our model, graphino, outperforms state-of-the-art deep learning-based models for forecasts up to six months ahead.
arXiv Detail & Related papers (2021-04-11T19:55:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.