論文の概要: Video Representation Learning with Joint-Embedding Predictive Architectures
- arxiv url: http://arxiv.org/abs/2412.10925v1
- Date: Sat, 14 Dec 2024 18:33:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:00:53.660051
- Title: Video Representation Learning with Joint-Embedding Predictive Architectures
- Title(参考訳): 共同埋め込み予測アーキテクチャによる映像表現学習
- Authors: Katrina Drozdov, Ravid Shwartz-Ziv, Yann LeCun,
- Abstract要約: 本稿では,VJ-VCR(Variance-Covariance Regularization)を用いたビデオJEPAを提案する。
本稿では,VJ-VCRの隠れ表現には,入力データに関する抽象的,高レベルな情報が含まれていることを示す。
- 参考スコア(独自算出の注目度): 23.250749688875196
- License:
- Abstract: Video representation learning is an increasingly important topic in machine learning research. We present Video JEPA with Variance-Covariance Regularization (VJ-VCR): a joint-embedding predictive architecture for self-supervised video representation learning that employs variance and covariance regularization to avoid representation collapse. We show that hidden representations from our VJ-VCR contain abstract, high-level information about the input data. Specifically, they outperform representations obtained from a generative baseline on downstream tasks that require understanding of the underlying dynamics of moving objects in the videos. Additionally, we explore different ways to incorporate latent variables into the VJ-VCR framework that capture information about uncertainty in the future in non-deterministic settings.
- Abstract(参考訳): ビデオ表現学習は、機械学習研究においてますます重要なトピックとなっている。
本稿では,可変共分散正規化(VJ-VCR)を用いたビデオJEPAを提案する。
VJ-VCRから隠された表現は、入力データに関する抽象的で高レベルな情報を含むことを示す。
具体的には、動画中の移動物体の基盤となるダイナミクスを理解する必要がある下流タスクにおいて、生成ベースラインから得られる表現よりも優れています。
さらに,VJ-VCRフレームワークに潜伏変数を組み込むことにより,将来不確実性に関する情報を非決定論的に取得する方法について検討する。
関連論文リスト
- Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases [69.46487306858789]
Conditional Autoregressive Slot Attention (CA-SA) は、ビデオ中心の視覚タスクにおいて抽出されたオブジェクト中心の表現の時間的一貫性を高めるフレームワークである。
本稿では,提案手法が下流タスクのベースラインよりも優れていることを示す定性的,定量的な結果を示す。
論文 参考訳(メタデータ) (2024-10-21T07:44:44Z) - Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation [72.90144343056227]
ビデオ理解タスクのためのテキスト・ツー・ビデオ拡散モデル(T2V)から生成した視覚的表現について検討する。
固定されたT2Vモデル上に構築された専用コンポーネントを備えた新しいフレームワーク「VD-IT」を紹介する。
我々のVD-ITは、既存の最先端手法を超越して、非常に競争力のある結果を得る。
論文 参考訳(メタデータ) (2024-03-18T17:59:58Z) - Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - Self-Supervised Video Representation Learning via Latent Time Navigation [12.721647696921865]
自己教師付きビデオ表現学習は、1つのビデオの異なる時間セグメント間の類似性を最大化することを目的としている。
微粒な動きを捉えるために、LTN(Latent Time Navigation)を提案する。
実験により,LTNによる映像表現の学習は,動作分類の性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2023-05-10T20:06:17Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
モーションコントラスト知覚ネットワーク(MCPNet)
MCPNetは、MIP(Motion Information Perception)とCIP(Contrastive Instance Perception)の2つのブランチから構成される。
本手法は,現在最先端の視覚のみによる自己監督手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-10T05:34:46Z) - Composable Augmentation Encoding for Video Representation Learning [94.2358972764708]
自己教師型ビデオ表現学習におけるコントラスト手法に着目した。
対照的な学習における一般的なパラダイムは、同じインスタンスで異なるデータビューをサンプリングし、異なるデータインスタンスを負として、ポジティブペアを構築することである。
そこで我々は,拡張パラメータの列を明示的に提供する,拡張対応型コントラスト学習フレームワークを提案する。
提案手法は,特定の空間的あるいは時間的拡張に関する情報をエンコードすると同時に,多数のビデオベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-04-01T16:48:53Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
野生のラベルのない動画を用いて,視覚的対応の自己監督学習について検討する。
本手法は,信頼性の高い対応推定のための映像内および映像間表現関連を同時に検討する。
我々のフレームワークは、近年の視覚的タスクにおける自己監督型対応手法よりも優れています。
論文 参考訳(メタデータ) (2020-12-09T14:05:06Z) - Memory-augmented Dense Predictive Coding for Video Representation
Learning [103.69904379356413]
本稿では,新しいアーキテクチャと学習フレームワーク Memory-augmented Predictive Coding (MemDPC) を提案する。
本稿では、RGBフレームからの視覚のみの自己教師付きビデオ表現学習や、教師なし光学フローからの学習、あるいはその両方について検討する。
いずれの場合も、トレーニングデータの桁数が桁違いに少ない他のアプローチに対して、最先端または同等のパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-08-03T17:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。