Deep Learning-Based Noninvasive Screening of Type 2 Diabetes with Chest X-ray Images and Electronic Health Records
- URL: http://arxiv.org/abs/2412.10955v1
- Date: Sat, 14 Dec 2024 20:18:16 GMT
- Title: Deep Learning-Based Noninvasive Screening of Type 2 Diabetes with Chest X-ray Images and Electronic Health Records
- Authors: Sanjana Gundapaneni, Zhuo Zhi, Miguel Rodrigues,
- Abstract summary: This study evaluates the integration of chest X-ray (CXR) images with other noninvasive data sources, including electronic health records (EHRs) and electrocardiography signals, for T2DM detection.
The end-to-end trained ResNet-LSTM model achieved an AUROC of 0.86, surpassing the CXR-only baseline by 2.3% with just 9863 training samples.
- Score: 2.2940141855172036
- License:
- Abstract: The imperative for early detection of type 2 diabetes mellitus (T2DM) is challenged by its asymptomatic onset and dependence on suboptimal clinical diagnostic tests, contributing to its widespread global prevalence. While research into noninvasive T2DM screening tools has advanced, conventional machine learning approaches remain limited to unimodal inputs due to extensive feature engineering requirements. In contrast, deep learning models can leverage multimodal data for a more holistic understanding of patients' health conditions. However, the potential of chest X-ray (CXR) imaging, one of the most commonly performed medical procedures, remains underexplored. This study evaluates the integration of CXR images with other noninvasive data sources, including electronic health records (EHRs) and electrocardiography signals, for T2DM detection. Utilising datasets meticulously compiled from the MIMIC-IV databases, we investigated two deep fusion paradigms: an early fusion-based multimodal transformer and a modular joint fusion ResNet-LSTM architecture. The end-to-end trained ResNet-LSTM model achieved an AUROC of 0.86, surpassing the CXR-only baseline by 2.3% with just 9863 training samples. These findings demonstrate the diagnostic value of CXRs within multimodal frameworks for identifying at-risk individuals early. Additionally, the dataset preprocessing pipeline has also been released to support further research in this domain.
Related papers
- A Compact LSTM-SVM Fusion Model for Long-Duration Cardiovascular
Diseases Detection [0.0]
Globally, cardiovascular diseases (CVDs) are the leading cause of mortality, accounting for an estimated 17.9 million deaths annually.
One critical clinical objective is the early detection of CVDs using electrocardiogram (ECG) data.
Recent advancements based on machine learning and deep learning have achieved great progress in this domain.
arXiv Detail & Related papers (2023-11-20T10:57:11Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Z-SSMNet: Zonal-aware Self-supervised Mesh Network for Prostate Cancer Detection and Diagnosis with Bi-parametric MRI [14.101371684361675]
We propose a Zonal-aware Self-supervised Mesh Network (Z-SSMNet)
Z-SSMNet adaptively integrates multi-dimensional (2D/2.5D/3D) convolutions to learn dense intra-slice information and sparse inter-slice information of the anisotropic bpMRI.
A self-supervised learning (SSL) technique is proposed to pre-train our network using large-scale unlabeled data.
arXiv Detail & Related papers (2022-12-12T10:08:46Z) - Early Diagnosis of Chronic Obstructive Pulmonary Disease from Chest
X-Rays using Transfer Learning and Fusion Strategies [1.234198411367205]
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic illnesses in the world and the third leading cause of mortality worldwide.
It is often underdiagnosed or not diagnosed until later in the disease course.
Spirometry tests are the gold standard for diagnosing COPD but can be difficult to obtain, especially in resource-poor countries.
Chest X-rays (CXRs) are readily available and may serve as a screening tool to identify patients with COPD who should undergo further testing.
arXiv Detail & Related papers (2022-11-13T15:12:22Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Pristine annotations-based multi-modal trained artificial intelligence
solution to triage chest X-ray for COVID-19 [1.1764495014312295]
COVID-19 pandemic continues to spread and impact the well-being of the global population.
Front-line modalities including computed tomography (CT) and X-ray play an important role for triaging COVID patients.
Considering the limited access of resources (both hardware and trained personnel) and decontamination considerations, CT may not be ideal for triaging suspected subjects.
arXiv Detail & Related papers (2020-11-10T15:36:08Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
Confidence Guided SAMR (CG-SAMR) synthesizes data from lesion information to multi-modal anatomic sequences.
module guides the synthesis based on confidence measure about the intermediate results.
experiments on real clinical data demonstrate that the proposed model can perform better than the state-of-theart synthesis methods.
arXiv Detail & Related papers (2020-08-06T20:20:22Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - Deep Learning Estimation of Multi-Tissue Constrained Spherical
Deconvolution with Limited Single Shell DW-MRI [2.903217519429591]
Deep learning can be used to estimate the information content captured by 8th order constrained spherical deconvolution (CSD)
We examine two network architectures: Sequential network of fully connected dense layers with a residual block in the middle (ResDNN), and Patch based convolutional neural network with a residual block (ResCNN)
The fiber orientation distribution function (fODF) can be recovered with high correlation as compared to the ground truth of MT-CST, which was derived from the multi-shell DW-MRI acquisitions.
arXiv Detail & Related papers (2020-02-20T15:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.