論文の概要: Optimal Rates for Robust Stochastic Convex Optimization
- arxiv url: http://arxiv.org/abs/2412.11003v1
- Date: Sun, 15 Dec 2024 00:52:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:59:48.311566
- Title: Optimal Rates for Robust Stochastic Convex Optimization
- Title(参考訳): ロバスト確率凸最適化のための最適速度
- Authors: Changyu Gao, Andrew Lowy, Xingyu Zhou, Stephen J. Wright,
- Abstract要約: 我々は、$epsilon$-optimalcontaminationモデルの下で、最小限のリスク(対数因子まで)を達成する新しいアルゴリズムを開発した。
我々のアルゴリズムは、これらの制限的な仮定を取り除きながら最適な速度を達成し、特に、非平滑だがリプシッツの集団リスクには有効である。
- 参考スコア(独自算出の注目度): 12.620782629498812
- License:
- Abstract: The sensitivity of machine learning algorithms to outliers, particularly in high-dimensional spaces, necessitates the development of robust methods. Within the framework of $\epsilon$-contamination model, where the adversary can inspect and replace up to $\epsilon$ fraction of the samples, a fundamental open question is determining the optimal rates for robust stochastic convex optimization (robust SCO), provided the samples under $\epsilon$-contamination. We develop novel algorithms that achieve minimax-optimal excess risk (up to logarithmic factors) under the $\epsilon$-contamination model. Our approach advances beyonds existing algorithms, which are not only suboptimal but also constrained by stringent requirements, including Lipschitzness and smoothness conditions on sample functions.Our algorithms achieve optimal rates while removing these restrictive assumptions, and notably, remain effective for nonsmooth but Lipschitz population risks.
- Abstract(参考訳): 機械学習アルゴリズムの外れ値に対する感度は、特に高次元空間において、堅牢な手法の開発を必要とする。
$\epsilon$-contaminationモデル(英語版)のフレームワーク内では、敵がサンプルの最大$\epsilon$分を検査して置き換えることができるが、根本的なオープンな疑問は、$\epsilon$-contaminationのサンプルを条件として、堅牢な確率的凸最適化(robust SCO)の最適率を決定することである。
我々は、$\epsilon$-contaminationモデルの下で、最小最適過剰リスク(対数因子まで)を達成する新しいアルゴリズムを開発した。
提案手法は, 標本関数に対するリプシッツ性やスムーズネス条件など, 厳密な条件によって制約されるだけでなく, 既存のアルゴリズムを超越した手法である。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Parameter-Free Algorithms for Performative Regret Minimization under
Decision-Dependent Distributions [15.396561118589577]
パフォーマンスリスク最小化は、決定依存分布の下での最適化の定式化である。
我々のアルゴリズムは、既存のリプシッツ定数分布パラメータに基づく手法を大幅に改善する。
提案手法は,既存手法と他のブラックボックス楽観的最適化手法に比較して,アルゴリズムの数値的優位性を示す実験結果を提供する。
論文 参考訳(メタデータ) (2024-02-23T08:36:28Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
この問題が低ランクの解を許容する高次元かつ高可算な設定に焦点をあてる。
これらの条件下では、よく知られた過次法が制約付き最適化問題の解に収束することを示す理論的結果がいくつか提示される。
論文 参考訳(メタデータ) (2024-02-14T10:48:00Z) - Bring Your Own Algorithm for Optimal Differentially Private Stochastic
Minimax Optimization [44.52870407321633]
これらの設定の聖杯は、プライバシーと過剰な人口減少の間の最適なトレードオフを保証することです。
微分プライベート・ミニマックス最適化(DP-SMO)問題を解くための一般的なフレームワークを提供する。
我々のフレームワークは、非滑らかな微分プライベート凸最適化(DP-SCO)のための最近提案されたフェイズド・ERM法[20]から着想を得たものである。
論文 参考訳(メタデータ) (2022-06-01T10:03:20Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
非滑らかな成分を持つ汎用合成対象関数に対する勾配アルゴリズムのミニバッチ変種を開発し解析する。
我々は、最小バッチサイズ$N$に対して、$mathcalO(frac1Nepsilon)$$epsilon-$subityが最適解に期待される二次距離で達成されるような、定数および変数のステップサイズ反復ポリシーの複雑さを提供する。
論文 参考訳(メタデータ) (2020-03-30T10:43:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。