論文の概要: Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models
- arxiv url: http://arxiv.org/abs/2412.11041v1
- Date: Sun, 15 Dec 2024 03:58:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:58:43.969721
- Title: Separate the Wheat from the Chaff: A Post-Hoc Approach to Safety Re-Alignment for Fine-Tuned Language Models
- Title(参考訳): チャフから小麦を分離する:微調整言語モデルにおける安全性の再調整のためのポストホックアプローチ
- Authors: Di Wu, Xin Lu, Yanyan Zhao, Bing Qin,
- Abstract要約: 大規模言語モデル(LLM)の安全性向上を実現する手法を提案する。
IRRの中核は、保持されたパラメータを再調整しながら、微調整されたモデルから安全でないデルタパラメータを特定し、除去することである。
この結果から,IRRは有害なクエリやジェイルブレイク攻撃などの安全性ベンチマークにおいて,微調整モデルの安全性を著しく向上することが示された。
- 参考スコア(独自算出の注目度): 30.93821289892195
- License:
- Abstract: Although large language models (LLMs) achieve effective safety alignment at the time of release, they still face various safety challenges. A key issue is that fine-tuning often compromises the safety alignment of LLMs. To address this issue, we propose a method named \textbf{IRR} (\textbf{I}dentify, \textbf{R}emove, and \textbf{R}ecalibrate for Safety Realignment) that performs safety realignment for LLMs. The core of IRR is to identify and remove unsafe delta parameters from the fine-tuned models, while recalibrating the retained ones. We evaluate the effectiveness of IRR across various datasets, including both full fine-tuning and LoRA methods. Our results demonstrate that IRR significantly enhances the safety performance of fine-tuned models on safety benchmarks, such as harmful queries and jailbreak attacks, while maintaining their performance on downstream tasks. The source code is available at: \url{https://anonymous.4open.science/r/IRR-BD4F}.
- Abstract(参考訳): 大きな言語モデル(LLM)はリリース時に効果的な安全アライメントを実現するが、それでもさまざまな安全上の課題に直面している。
重要な問題は、微調整がLLMの安全性を損なうことである。
この問題に対処するため, LLMの安全性確保を行う方法として, \textbf{IRR}(\textbf{I}dentify, \textbf{R}emove, \textbf{R}ecalibrate for Safety Realignment)を提案する。
IRRの中核は、保持されたパラメータを再調整しながら、微調整されたモデルから安全でないデルタパラメータを特定し、除去することである。
完全微調整法とLoRA法の両方を含む各種データセットにおけるIRRの有効性を評価する。
以上の結果から、IRRは、下流タスクにおける性能を維持しつつ、有害なクエリやジェイルブレイク攻撃などの安全性ベンチマーク上での微調整モデルの安全性を著しく向上することを示した。
ソースコードは以下の通りである。 \url{https://anonymous.4open.science/r/IRR-BD4F}。
関連論文リスト
- STAIR: Improving Safety Alignment with Introspective Reasoning [44.780098674618614]
SafeTyアライメントとItrospective Reasoningを統合したフレームワークSTAIRを提案する。
その結果,STAIRは本能的アライメント戦略と比較して,有害なアウトプットを効果的に軽減し,有用性を保っていることがわかった。
テスト時のスケーリングでは、STAIRは一般的なジェイルブレイク攻撃に対して、Claude-3.5に匹敵する安全性能を達成する。
論文 参考訳(メタデータ) (2025-02-04T15:02:55Z) - SaLoRA: Safety-Alignment Preserved Low-Rank Adaptation [41.91948079316541]
近年の研究では、LoRAの微調整が大きな言語モデルの安全性を損なう可能性があるという懸念が持ち上がっている。
本稿では,安全性に配慮した低ランク適応(SaLoRA)を提案する。
以前のLoRAメソッドやその派生型とは異なり、SaLoRAは本来のアライメントを中断することなく、LLMへのターゲット変更を可能にする。
実験の結果,SaLoRAは様々な微調整タスクにおいて,様々な評価指標のアダプタベースのアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-01-03T11:34:28Z) - Locking Down the Finetuned LLMs Safety [33.56657036839617]
特定の下流タスクのために最適化するためには、追加のデータセット上での微調整大型言語モデル(LLM)が必要であることが多い。
既存の安全アライメント対策は、推論中の有害な行動を制限するものであり、微調整時の安全性リスクを軽減するには不十分である。
そこで,本研究では,手直し後の堅牢な安全性を維持する新しいアライメント介入手法であるSafetyLockを紹介する。
論文 参考訳(メタデータ) (2024-10-14T09:58:29Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Safe LoRA: the Silver Lining of Reducing Safety Risks when Fine-tuning Large Language Models [51.20476412037321]
提案するSafe LoRAは,選択した層からのLoRA重みの投影を安全に整合した部分空間に導入することにより,オリジナルのLoRA実装に対する単純なワンライナーパッチである。
我々の実験は、純粋に悪意のあるデータに対して微調整を行う場合、Safe LoRAは元のアライメントモデルと同様の安全性を保っていることを示した。
論文 参考訳(メタデータ) (2024-05-27T05:04:05Z) - A safety realignment framework via subspace-oriented model fusion for large language models [22.588716190505963]
サブスペース指向モデル融合(SOMF)による安全性向上フレームワークを提案する。
我々のアプローチは、各微調整されたモデルの重みから全てのタスクベクトルを遠ざけることから始まる。
次に,これらのベクトル内の安全関連領域をサブスペースマスキング手法により同定する。
論文 参考訳(メタデータ) (2024-05-15T03:04:05Z) - ROSE Doesn't Do That: Boosting the Safety of Instruction-Tuned Large Language Models with Reverse Prompt Contrastive Decoding [89.0074567748505]
本稿では,既存の命令調整LDMの安全性を高めるための簡易な手法であるROSE(Reverse prompt contrastive decoding)を提案する。
6つの安全性と2つの汎用タスクの実験から、ROSEは5種類の命令調整LDMに対して、一貫した、重要な安全性向上(+13.8%の安全性スコア)をもたらすだけでなく、LLMの汎用能力にも恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2024-02-19T06:58:42Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Fine-tuning Aligned Language Models Compromises Safety, Even When Users
Do Not Intend To! [88.90694413503614]
LLMの安全性は微調整によって損なわれる可能性がある。
我々は、GPT-3.5の安全ガードレールを10種類の例で微調整することで、脱獄した。
我々は、協調LLMのカスタム微調整のための安全プロトコルの強化に向けたさらなる研究を提唱する。
論文 参考訳(メタデータ) (2023-10-05T17:12:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。