Facial Surgery Preview Based on the Orthognathic Treatment Prediction
- URL: http://arxiv.org/abs/2412.11045v1
- Date: Sun, 15 Dec 2024 04:06:39 GMT
- Title: Facial Surgery Preview Based on the Orthognathic Treatment Prediction
- Authors: Huijun Han, Congyi Zhang, Lifeng Zhu, Pradeep Singh, Richard Tai Chiu Hsung, Yiu Yan Leung, Taku Komura, Wenping Wang, Min Gu,
- Abstract summary: Current visualization methods are often inaccurate due to limited pre- and post-treatment data.
This study develops a fully automated contour geometries that generates accurate and efficient 3D postsurgical predictions.
- Score: 39.0210096599548
- License:
- Abstract: Orthognathic surgery consultation is essential to help patients understand the changes to their facial appearance after surgery. However, current visualization methods are often inefficient and inaccurate due to limited pre- and post-treatment data and the complexity of the treatment. To overcome these challenges, this study aims to develop a fully automated pipeline that generates accurate and efficient 3D previews of postsurgical facial appearances for patients with orthognathic treatment without requiring additional medical images. The study introduces novel aesthetic losses, such as mouth-convexity and asymmetry losses, to improve the accuracy of facial surgery prediction. Additionally, it proposes a specialized parametric model for 3D reconstruction of the patient, medical-related losses to guide latent code prediction network optimization, and a data augmentation scheme to address insufficient data. The study additionally employs FLAME, a parametric model, to enhance the quality of facial appearance previews by extracting facial latent codes and establishing dense correspondences between pre- and post-surgery geometries. Quantitative comparisons showed the algorithm's effectiveness, and qualitative results highlighted accurate facial contour and detail predictions. A user study confirmed that doctors and the public could not distinguish between machine learning predictions and actual postoperative results. This study aims to offer a practical, effective solution for orthognathic surgery consultations, benefiting doctors and patients.
Related papers
- An Endoscopic Chisel: Intraoperative Imaging Carves 3D Anatomical Models [8.516340459721484]
We propose a first vision-based approach to update the preoperative 3D anatomical model.
Results show a decrease in error during surgical progression as opposed to increasing when no update is employed.
arXiv Detail & Related papers (2024-02-19T05:06:52Z) - Learning Expected Appearances for Intraoperative Registration during
Neurosurgery [39.256282185354465]
We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances.
Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical microscope for a predicted range of transformations.
arXiv Detail & Related papers (2023-10-03T01:50:48Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment.
Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance.
This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection.
arXiv Detail & Related papers (2023-09-02T04:42:08Z) - Advancing Wound Filling Extraction on 3D Faces: Auto-Segmentation and
Wound Face Regeneration Approach [0.0]
We propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.
Based on the segmentation model, we propose an improved approach for extracting 3D facial wound fillers.
Our method achieved a remarkable accuracy of 0.9999986% on the test suite, surpassing the performance of the previous method.
arXiv Detail & Related papers (2023-07-04T17:46:02Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
We evaluate the performance of transformer-based models in predicting postoperative acute renal failure, pulmonary complications, and postoperative in-hospital mortality.
Our results demonstrate that transformer-based models can achieve superior performance in predicting postoperative complications and outperform traditional machine learning models.
arXiv Detail & Related papers (2023-06-01T14:08:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities.
This is achieved using in-vivo data of gastric endoscopy (Hyper-Kvasir) in a fully unsupervised manner.
We also assess the effect of our method in computer vision tasks that underpin 3D reconstruction and camera motion estimation.
arXiv Detail & Related papers (2022-03-31T13:14:00Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.