論文の概要: RAC3: Retrieval-Augmented Corner Case Comprehension for Autonomous Driving with Vision-Language Models
- arxiv url: http://arxiv.org/abs/2412.11050v1
- Date: Sun, 15 Dec 2024 04:51:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 15:49:59.972104
- Title: RAC3: Retrieval-Augmented Corner Case Comprehension for Autonomous Driving with Vision-Language Models
- Title(参考訳): RAC3:視覚言語モデルを用いた自律走行のための検索コーナケース理解
- Authors: Yujin Wang, Quanfeng Liu, Jiaqi Fan, Jinlong Hong, Hongqing Chu, Mengjian Tian, Bingzhao Gao, Hong Chen,
- Abstract要約: VLM(Vision-Language Models)はシナリオ理解の促進に重要な役割を果たす。
幻覚や現実世界の接地不足といった課題に直面している。
本稿では,VLMのコーナケースを効果的に処理する能力を向上させるためのフレームワークであるRAC3を提案する。
- 参考スコア(独自算出の注目度): 9.304973961799359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and addressing corner cases is essential for ensuring the safety and reliability of autonomous driving systems. Vision-Language Models (VLMs) play a crucial role in enhancing scenario comprehension, yet they face significant challenges, such as hallucination and insufficient real-world grounding, which compromise their performance in critical driving scenarios. In this work, we propose RAC3, a novel framework designed to improve VLMs' ability to handle corner cases effectively. The framework integrates Retrieval-Augmented Generation (RAG) to mitigate hallucination by dynamically incorporating context-specific external knowledge. A cornerstone of RAC3 is its cross-modal alignment fine-tuning, which utilizes contrastive learning to embed image-text pairs into a unified semantic space, enabling robust retrieval of similar scenarios. We evaluate RAC3 through extensive experiments using a curated dataset of corner case scenarios, demonstrating its ability to enhance semantic alignment, improve hallucination mitigation, and achieve superior performance metrics, such as Cosine Similarity and ROUGE-L scores. For example, for the LLaVA-v1.6-34B VLM, the cosine similarity between the generated text and the reference text has increased by 5.22\%. The F1-score in ROUGE-L has increased by 39.91\%, the Precision has increased by 55.80\%, and the Recall has increased by 13.74\%. This work underscores the potential of retrieval-augmented VLMs to advance the robustness and safety of autonomous driving in complex environments.
- Abstract(参考訳): 自動運転システムの安全性と信頼性を確保するためには,コーナーケースの理解と対処が不可欠である。
VLM(Vision-Language Models)は、シナリオ理解の強化において重要な役割を果たすが、幻覚や現実の接地が不十分で、重要な運転シナリオにおけるパフォーマンスを損なうなど、大きな課題に直面している。
本研究では,VLMのコーナケースを効果的に処理する能力を向上させるための新しいフレームワークであるRAC3を提案する。
このフレームワークはRetrieval-Augmented Generation (RAG)を統合し、コンテキスト固有の外部知識を動的に組み込むことで幻覚を緩和する。
RAC3の基盤となるのはクロスモーダルアライメントの微調整であり、コントラスト学習を利用して画像とテキストのペアを統一的なセマンティック空間に埋め込み、同様のシナリオの堅牢な検索を可能にする。
コーナケースシナリオのキュレートされたデータセットを用いて、RAC3の評価を行い、セマンティックアライメントを強化し、幻覚の緩和を改善し、コサイン類似度やROUGE-Lスコアなどの優れたパフォーマンス指標を達成する能力を示す。
例えば、LLaVA-v1.6-34B VLMでは、生成されたテキストと参照テキストのコサイン類似性が5.22\%向上している。
ROUGE-LのF1スコアは39.91 %、精度は55.80 %、リコールは13.74 %向上した。
この研究は、複雑な環境下での自律運転の堅牢性と安全性を高めるために、検索強化VLMの可能性を強調している。
関連論文リスト
- SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++は、連続するカメラペアを使用して事前トレーニングと下流タスクを統合する新しいフレームワークである。
SuperFlow++は様々なタスクや運転条件で最先端のメソッドよりも優れています。
強力な一般化性と計算効率により、SuperFlow++は、自動運転におけるデータ効率の高いLiDARベースの認識のための新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2025-03-25T17:59:57Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
視覚言語モデル(VLM)は、空間認識の不十分さや幻覚といった限界に悩まされることが多い。
本稿では,自律走行シーンにおけるメタアクションを確実に生成するVLMの能力を高めるための,検索強化意思決定(RAD)フレームワークを提案する。
我々は,NuScenesデータセットから得られたデータセットに基づいてVLMを微調整し,その空間的知覚と鳥眼視画像理解能力を高める。
論文 参考訳(メタデータ) (2025-03-18T03:25:57Z) - CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting [14.567180355849501]
CoT-Driveは,大規模言語モデル(LLM)とチェーン・オブ・シークレット(CoT)プロンプト手法を活用することで,動き予測を強化する新しい手法である。
我々は,LLMの高度なシーン理解能力を軽量言語モデル(LM)に効果的に伝達する,教師による知識蒸留戦略を導入する。
本稿では,文脈固有の意味アノテーションを生成するための軽量なLMを微調整するための2つのシーン記述データセットであるHighway-TextとUrban-Textを提案する。
論文 参考訳(メタデータ) (2025-03-10T12:17:38Z) - DriveTransformer: Unified Transformer for Scalable End-to-End Autonomous Driving [62.62464518137153]
DriveTransformerは、スケールアップを簡単にするためのシンプルなE2E-ADフレームワークである。
タスク・セルフ・アテンション、センサー・クロス・アテンション、時間的クロス・アテンションという3つの統合された操作で構成されている。
シミュレーションされたクローズドループベンチマークBench2Driveと、FPSの高い実世界のオープンループベンチマークnuScenesの両方で、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-03-07T11:41:18Z) - PFSD: A Multi-Modal Pedestrian-Focus Scene Dataset for Rich Tasks in Semi-Structured Environments [73.80718037070773]
本稿では, 半構造化シーンに, nuScenesの形式を付加したマルチモーダルなPedestrian-Focused Sceneデータセットを提案する。
また,密集・隠蔽シナリオにおける歩行者検出のためのHMFN(Hybrid Multi-Scale Fusion Network)を提案する。
論文 参考訳(メタデータ) (2025-02-21T09:57:53Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Generating Critical Scenarios for Testing Automated Driving Systems [5.975915967339764]
AVASTRAは、自律運転システムをテストするための現実的な重要なシナリオを生成するための強化学習ベースのアプローチである。
その結果、AVASTRAは、30%から115%の衝突シナリオを発生させることで、最先端のアプローチを上回る能力を示している。
論文 参考訳(メタデータ) (2024-12-03T16:59:30Z) - Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
大規模言語モデル(LLM)は自動運転において有望であることを示している。
本稿では,多様なOF-Distribution(OOD)駆動シナリオを生成するためのフレームワークを提案する。
我々は、広範囲なシミュレーションを通じてフレームワークを評価し、新しい"OOD-ness"メトリクスを導入する。
論文 参考訳(メタデータ) (2024-11-25T16:38:17Z) - Hints of Prompt: Enhancing Visual Representation for Multimodal LLMs in Autonomous Driving [65.04643267731122]
一般的なMLLMとCLIPの組み合わせは、駆動固有のシナリオを正確に表現するのに苦労することが多い。
Hints of Prompt (HoP) フレームワークを提案する。
これらのヒントはHint Fusionモジュールを通じて融合され、視覚的表現が強化され、マルチモーダル推論が強化される。
論文 参考訳(メタデータ) (2024-11-20T06:58:33Z) - MetaSSC: Enhancing 3D Semantic Scene Completion for Autonomous Driving through Meta-Learning and Long-sequence Modeling [3.139165705827712]
セマンティックシーン補完(SSC)のためのメタラーニングに基づく新しいフレームワークであるMetaSSCを紹介する。
我々のアプローチは、不完全領域のセマンティックスと幾何学を探求することを目的とした、ボクセルに基づくセマンティックセマンティックセマンティクス(SS)事前訓練タスクから始まる。
シミュレーションされた協調認識データセットを用いて、集約されたセンサデータを用いて1台の車両の知覚訓練を監督する。
このメタ知識は、二重フェーズのトレーニング戦略を通じてターゲットドメインに適応し、効率的なデプロイメントを可能にする。
論文 参考訳(メタデータ) (2024-11-06T05:11:25Z) - Transforming In-Vehicle Network Intrusion Detection: VAE-based Knowledge Distillation Meets Explainable AI [0.0]
本稿では,変分オートエンコーダ(VAE)に基づく知識蒸留手法を用いて,KD-XVAEと呼ばれる高度な侵入検知システムを提案する。
本モデルでは,1669個のパラメータで処理し,バッチ毎に0.3msの推論時間を実現することにより,複雑性を大幅に低減する。
論文 参考訳(メタデータ) (2024-10-11T17:57:16Z) - From Imitation to Exploration: End-to-end Autonomous Driving based on World Model [24.578178308010912]
RAMBLEは、意思決定を駆動するエンド・ツー・エンドの世界モデルベースのRL方式である。
複雑な動的トラフィックシナリオを処理できる。
CARLA Leaderboard 1.0では、ルート完了率の最先端のパフォーマンスを達成し、CARLA Leaderboard 2.0では38のシナリオをすべて完了している。
論文 参考訳(メタデータ) (2024-10-03T06:45:59Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - LanEvil: Benchmarking the Robustness of Lane Detection to Environmental Illusions [61.87108000328186]
レーン検出(LD)は自律走行システムにおいて不可欠な要素であり、適応型クルーズ制御や自動車線センターなどの基本的な機能を提供している。
既存のLDベンチマークは主に、環境錯覚に対するLDモデルの堅牢性を無視し、一般的なケースを評価することに焦点を当てている。
本稿では、LDに対する環境錯覚による潜在的な脅威について検討し、LanEvilの最初の総合ベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-03T02:12:27Z) - Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay [6.0111084468944]
遅延状態推論・安全制御(L3IS)エージェントを用いたレーンキーピング・レーンチェンジについて紹介する。
L3ISは、周囲の車両の意図や運転スタイルに関する包括的な知識を必要とせずに、オンランプのマージ作業を安全に行うように設計されている。
本稿では,観測遅延を考慮に入れたAL3ISというエージェントを改良し,実環境においてより堅牢な決定を行えるようにした。
論文 参考訳(メタデータ) (2024-03-18T15:02:46Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。